
Skill 8: Tool Engineering

Semantic Capability and Tool Engineering

Nine Skills Framework for Agentic AI

Terry Byrd

byrddynasty.com

Byrddynasty | Agentic AI Strategy

1

Deep Dive Analysis: Skill 8 -

Semantic Capability and Tool

Engineering

Author: Manus AI Date: January 1, 2026 Version: 1.0

Executive Summary

This report provides a comprehensive deep dive into Skill 8: Semantic Capability and

Tool Engineering. Agents extend their capabilities by using tools—functions, APIs, and

services that allow them to interact with the world. The quality of these tools is a

primary determinant of agent performance. This skill addresses the critical discipline of

designing, building, and managing tools that are discoverable, understandable, and safe

for agents to use.

This analysis is the result of a wide research process that examined twelve distinct

dimensions of this skill, organized into its four core sub-competencies, plus cross-

cutting and advanced topics:

Function Calling and Tool Definitions: Designing clear, robust tool schemas and

error handling.

Dynamic Tool Discovery and Composition: Enabling agents to find and chain

tools on the fly.

Tool UX Design for Agents: Crafting tool descriptions and documentation for

semantic usability.

The Agent Skills Standard and Progressive Disclosure: Leveraging standards

for modular, scalable tool packaging.

For each dimension, this report details the conceptual foundations, provides a technical

deep dive, analyzes evidence from modern frameworks and standards, outlines practical

implementation guidance, and discusses usability considerations. The goal is to equip

1.

2.

3.

4.

Byrddynasty | Agentic AI Strategy

2

architects and engineers with the in-depth knowledge to build a rich ecosystem of high-

quality tools for enterprise-grade agentic AI.

Sub-Skill 8.1: Function Calling and Tool Definitions

Sub-skill 8.1a: Designing Clear Tool Schemas - JSON Schema and

OpenAPI specifications, input/output definitions, parameter

constraints, type safety

Conceptual Foundation The foundation of clear tool schema design rests on

established principles from Software Engineering and API Design, primarily the

concept of an Interface Definition Language (IDL) and Design by Contract (DbC).

In this context, JSON Schema and OpenAPI serve as the IDL, defining the contract

between the LLM (the caller) and the external tool (the callee). This contract specifies

the function signature, including the tool name, a semantic description, and the input/

output structure. The theoretical underpinning is that by formalizing the interface, we

decouple the LLM's reasoning from the tool's implementation, ensuring that the

interaction is predictable and verifiable [6].

The concept of semantic interface is crucial. Unlike traditional APIs where the contract

is primarily for human developers and compilers, the agent tool schema must be

semantically rich enough for the LLM to reason about its utility. This is achieved through

high-quality description fields for the tool and its parameters, which the LLM uses to

determine when and how to call the function. The schema transforms the tool from a

mere function into an affordance—a perceived possibility for action—that the LLM can

integrate into its planning and reasoning process (e.g., ReAct pattern) [7].

Furthermore, the emphasis on type safety and parameter constraints directly

addresses the inherent unreliability of LLMs in generating precise, structured output. By

leveraging JSON Schema's features (e.g., type , required , enum , pattern), the schema

acts as a grammar that constrains the LLM's output space. This constraint-based

generation is a form of schema-guided decoding, which significantly increases the

probability of the LLM producing a valid, executable tool call, thereby improving the

overall reliability and security of the agent system [8]. This systematic approach

Byrddynasty | Agentic AI Strategy

3

elevates tool use from a brittle prompt-based heuristic to a robust, software-engineered

component.

Technical Deep Dive The technical core of clear tool schema design is the use of

JSON Schema as a declarative language for defining the structure of the tool's input

payload. A tool definition typically consists of three parts: the tool's natural language

description, the tool's name (which maps to the executable function), and the

parameters object, which is a JSON Schema object of type: object . This object defines

the arguments the LLM must generate.

Schema Structure and Type Safety: The properties within the parameters object are

where type safety is enforced. For example, to ensure a parameter is a whole number,

the schema uses "type": "integer" . To enforce a range, "minimum" and "maximum" are

used. For complex data structures, the type: object or type: array is used recursively.

The required array is paramount, as it explicitly tells the LLM which arguments are

mandatory for a successful tool call.

{
 "type": "function",
 "function": {
 "name": "book_flight",
 "description": "Books a flight from an origin to a destination on a specific date.",
 "parameters": {
 "type": "object",
 "properties": {
 "origin": {"type": "string", "description": "The IATA code for the departure airport."},
 "destination": {"type": "string", "description": "The IATA code for the arrival airport."},
 "departure_date": {"type": "string", "format": "date", "description": "The date of departure in YYYY-MM-DD format."}
 },
 "required": ["origin", "destination", "departure_date"]
 }
 }
}

Protocol and Implementation: The LLM provider's API acts as the protocol layer.

The agent sends the tool definitions (like the JSON above) to the LLM. The LLM, upon

receiving a user prompt, decides whether to call a tool. If it does, it generates a

structured response containing the tool call. The agent runtime then intercepts this

response, validates the generated arguments JSON against the original schema, and

only if valid, executes the corresponding host function (book_flight in this case) with

Byrddynasty | Agentic AI Strategy

4

the deserialized arguments. This validate-before-execute pattern is the cornerstone

of robust agentic systems.

Parameter Constraints and Semantic Usability: Beyond basic types, the use of

semantic constraints is key. The description field for each property is the primary

input for the LLM's reasoning. A poor description like "city": {"type": "string"} is

insufficient. A clear description like "city": {"type": "string", "description": "The full

name of the city, e.g., 'San Francisco', not the airport code."} significantly improves

the LLM's accuracy. Furthermore, using format (e.g., date , email , uri) or pattern

(for regex validation) provides the LLM with a target structure to generate, effectively

leveraging the model's pattern-matching capabilities for structured output [14]. This

technical rigor ensures that the LLM's output is not just text, but a verifiable, executable

data structure. The use of OpenAPI extends this by allowing the definition of the tool's

output schema as well, enabling the agent to better parse and reason about the results

returned by the external API.

Framework and Standards Evidence Major LLM providers have converged on JSON

Schema as the de facto standard for defining tool contracts, though their specific

implementation protocols vary:

OpenAI Function Calling: OpenAI pioneered the widespread use of JSON Schema

for tool definition. The model is provided with a list of functions, each described by a

name , description , and a parameters object which is a full JSON Schema object

defining the function's arguments. The model's response includes a tool_calls array,

where each element contains the function name and a JSON string of arguments

that conforms to the provided schema.

Example: A function get_weather would have a parameters schema with a type:

object , properties including city (type: string , description: "The city name"),

and required: ["city"] .

Anthropic Tool Use (Claude): Anthropic also uses JSON Schema for tool definition,

but the interaction is framed within a structured XML-like format called <tool_use>

tags in the conversation. The tool definition is passed in the system prompt or a

1.

◦

2.

Byrddynasty | Agentic AI Strategy

5

dedicated tool configuration. The model generates a <tool_use> block containing the

tool name and a JSON payload for the arguments, which must adhere to the schema.

Key Difference: Anthropic often emphasizes the importance of providing detailed,

high-quality descriptions and examples within the schema to guide the model's

reasoning, often leveraging the model's strong contextual understanding.

Google Function Calling (Gemini): Google's approach is similar, using a

FunctionDeclaration object that includes the function name, description, and an

parameters field defined using OpenAPI/JSON Schema syntax. The model's response

contains a FunctionCall object with the name and a JSON structure for the

arguments.

Technical Detail: Gemini's API often supports more complex data types and

structures directly, aligning closely with the OpenAPI specification for robust API

integration.

OpenAPI Specification (OAS): While not an LLM-specific framework, OAS

(formerly Swagger) is the foundational standard. Many agent frameworks, including

LangChain and LlamaIndex, use OpenAPI documents to automatically generate LLM-

compatible tool schemas. OAS extends JSON Schema to define entire APIs, including

multiple endpoints, HTTP methods, request/response bodies, and security schemes,

making it ideal for integrating complex REST services as agent tools.

Agent Skills Standard (Conceptual): Emerging standards aim to create a

protocol-agnostic definition layer. The goal is a universal tool manifest that can be

compiled into the specific JSON Schema formats required by OpenAI, Anthropic, or

Google. This promotes tool reusability and portability across different LLM backends,

ensuring the core schema definition remains a single source of truth [9].

Practical Implementation The key decision for tool engineers is determining the

granularity and specificity of the tool schema. Should a tool be a monolithic function

with many optional parameters, or should it be broken down into several atomic, single-

purpose functions? Best practice dictates favoring atomic, single-purpose tools to

minimize the LLM's cognitive load and reduce the chance of misinterpreting complex

parameter dependencies.

The central usability-flexibility tradeoff lies in the balance between constraining

the LLM's output (for reliability) and allowing for complex, flexible inputs (for

◦

3.

◦

4.

5.

Byrddynasty | Agentic AI Strategy

6

capability). Over-constraining with too many enum values or rigid pattern regexes can

lead to the LLM failing to generate a valid call even when the intent is correct.

Conversely, under-constraining with only type: string for all parameters leads to

unpredictable, unsafe outputs.

A practical decision framework involves:

Decision

Point

Reliability-Focused

(Constraint)

Flexibility-

Focused

(Usability)

Best Practice

Parameter

Type

Use enum , number

with minimum /

maximum , and format

(e.g., date-time).

Use generic

string or object

with minimal

constraints.

Use the most specific type

and constraint possible

without restricting valid

inputs.

Tool

Description

Focus on technical

function and side

effects.

Focus on user

intent and high-

level goal.

Combine both: a concise

technical summary and a

clear, user-centric

description of the outcome.

Schema

Size

Small, flat schemas

(max 5-7 parameters).

Large, deeply

nested schemas to

model complex

data structures.

Principle of Least

Schema: Keep schemas

small and atomic. Use

object parameters only

when necessary for

grouping.

Implementation Best Practices include using Pydantic (or similar libraries) to define

the schema in code, ensuring the schema is always synchronized with the function's

actual signature. Furthermore, all parameters should be treated as required unless

there is a strong, documented reason for them to be optional, as LLMs are generally

more reliable when generating required fields [12]. Finally, the use of semantic

descriptions in the description field for every parameter is non-negotiable, as this is

the primary signal the LLM uses for argument generation.

Common Pitfalls * Vague or Ambiguous Descriptions: The natural language

description of the tool or its parameters is unclear, leading the LLM to misinterpret the

tool's purpose or the required arguments. * Mitigation: Use concise, action-oriented

descriptions. Include examples in the description field. Ensure the description clearly

Byrddynasty | Agentic AI Strategy

7

states the tool's side effects and return value. * Insufficient Parameter Constraints:

Relying only on basic types (string , number) without using advanced JSON Schema

features like enum , pattern , minimum / maximum , or format (e.g., date-time , email). This

leads to the LLM generating syntactically correct but semantically invalid inputs. *

Mitigation: Maximize the use of all available JSON Schema keywords to constrain the

LLM's output space. Use enum for categorical data and pattern for structured identifiers

(e.g., product IDs). * Schema Drift and Lack of Versioning: The tool's underlying

API changes, but the LLM-facing schema is not updated, causing the agent to call a

non-existent or broken function signature. * Mitigation: Implement a contract-first

development process where the schema is the source of truth. Use versioning (e.g., /

v1/) for tools and maintain a registry to manage schema evolution. * Overly Complex

or Deeply Nested Schemas: Presenting the LLM with a massive, deeply nested

schema for a simple task, which consumes excessive context tokens and increases the

cognitive load on the model, leading to higher error rates. * Mitigation: Follow the

Principle of Least Schema. Design small, atomic tools with flat, minimal parameter

structures. Use oneOf or anyOf sparingly and only when necessary to model complex

polymorphism. * Ignoring Type Safety in Host Language: Generating a JSON

payload from the LLM but failing to validate and deserialize it into a strongly-typed

object in the host language (e.g., Python, Java), leading to runtime errors. * Mitigation:

Use type-safe deserialization libraries (like Pydantic in Python) that automatically

validate the LLM's JSON output against the defined schema before execution [5].

Real-World Use Cases 1. Financial Transaction Processing (Criticality: High

Safety) * Success Story: A well-designed transfer_funds tool schema uses strict

constraints: source_account and target_account are defined with a pattern regex for

account numbers; amount is a number with minimum: 0.01 and maximum limits; and a

required currency field uses an enum: ["USD", "EUR", "GBP"] . This clear schema ensures

type safety and prevents the LLM from hallucinating invalid account numbers or

negative transfer amounts, mitigating significant financial risk. * Failure Mode: An ad-

hoc tool described as "send money" with a single details string parameter. The LLM

might generate "send $100 to John Doe" which the system fails to parse, or worse,

generates a valid but incorrect account number, leading to a non-recoverable transfer

error.

2. Database Query Generation (Criticality: High Accuracy) * Success Story: A

query_database tool is provided with a schema that dynamically includes only the

relevant table and column names from the database schema, using an enum for column

Byrddynasty | Agentic AI Strategy

8

names and a constrained string for the query condition. This schema pruning and

constraint application drastically improves the LLM's ability to generate syntactically and

semantically correct SQL queries, preventing injection vulnerabilities and incorrect data

retrieval. * Failure Mode: Providing the LLM with the entire, unconstrained database

schema. The LLM hallucinates non-existent columns or generates queries that violate

foreign key constraints, resulting in query failures or, in a write context, data corruption.

3. Customer Support Triage (Criticality: High Reliability) * Success Story: A

triage_ticket tool uses a schema with a required priority parameter defined by a

constrained enum: ["low", "medium", "high", "critical"] and a required department

parameter with a fixed enum list. The LLM is forced to categorize the user's request into

a predefined, valid set of options, enabling reliable routing to the correct internal

system. * Failure Mode: The tool schema uses a free-form priority_level string. The

LLM generates variations like "super high," "urgent," or "P1," which the downstream

system cannot map, causing the ticket to be misrouted or stuck in an unassigned queue

[13].

Sub-skill 8.1b: Implementing Robust Error Handling

Conceptual Foundation The foundation of robust error handling in agent tool

engineering is rooted in three core disciplines: Software Engineering, API Design,

and Semantic Interface Theory. From a software engineering perspective, the

principle of Fail Fast, Fail Loudly, and Fail Informatively is paramount. When a tool

execution fails, the resulting output must not be a vague, unstructured string, but a

highly structured, machine-readable payload that clearly communicates the nature,

scope, and severity of the failure. This structure is essential for the agent's reasoning

loop, allowing it to transition from a state of failure to a state of self-correction or

graceful degradation. This moves beyond traditional exception handling, where the

goal is merely to prevent program termination, to a semantic layer where the goal is to

enable intelligent recovery.

API design contributes the concept of Standardized Error Contracts. Just as

successful API calls adhere to a defined response schema, error responses must also

conform to a predictable structure, typically leveraging HTTP status codes for transport-

level errors and a standardized JSON body for application-level errors. The key

innovation for agent tools is the shift from human-interpretable error messages to

agent-interpretable error messages. This means the message must contain not just

Byrddynasty | Agentic AI Strategy

9

a description of what went wrong, but also explicit or implicit retry guidance and

causal information. For example, an error message should distinguish between a

transient network issue (retryable) and a permanent authentication failure (non-

retryable without human intervention). This semantic richness transforms the error

response from a mere notification into an actionable piece of data for the LLM's planning

mechanism.

Semantic Interface Theory dictates that the tool's interface, including its error contract,

must be designed for maximum discoverability and understandability by the LLM.

The LLM's primary mode of interaction is through natural language reasoning over the

provided tool schema and documentation. Therefore, the error structure must be

explicitly defined within the tool's schema (e.g., OpenAPI or JSON Schema) to be

ingested by the LLM during the initial prompt context. This explicit definition, including

standardized error codes and suggested actions, allows the LLM to integrate error

prediction and recovery into its initial plan, significantly improving the robustness and

reliability of multi-step agentic workflows. The theoretical underpinning here is that a

well-defined error space reduces the cognitive load on the LLM, enabling more

deterministic and reliable decision-making.

Technical Deep Dive Implementing robust error handling requires a layered technical

approach, starting with a rigorous JSON Schema definition for all tool responses,

including the error state. The core of this is a standardized error object that is returned

in the tool output, regardless of the underlying API's native error format. This object

must contain three critical components: a machine-readable code , a human-readable

message , and an agent-interpretable details object which includes retry_guidance .

A typical structured error response schema would look like this:

{
 "type": "object",
 "properties": {
 "status": {"type": "string", "enum": ["success", "error"]},
 "error": {
 "type": "object",
 "properties": {
 "code": {"type": "string", "description": "A standardized, machine-readable error code (e.g., 'RESOURCE_NOT_FOUND', 'TRANSIENT_NETWORK_ERROR')."},
 "message": {"type": "string", "description": "A detailed, human-readable description of the error."},
 "retry_guidance": {
 "type": "object",
 "properties": {
 "is_retryable": {"type": "boolean", "description": "True if the error is transient and can be retried."},

Byrddynasty | Agentic AI Strategy

10

 "suggested_delay_seconds": {"type": "integer", "description": "The minimum delay before the next retry attempt (e.g., for rate limiting)."},
 "agent_action_required": {"type": "string", "description": "Specific action the agent should take, e.g., 'AUTHENTICATE_USER', 'REPHRASE_QUERY', or 'NONE'."}
 },
 "required": ["is_retryable", "agent_action_required"]
 }
 },
 "required": ["code", "message", "retry_guidance"]
 }
 },
 "required": ["status"]
}

This schema ensures that the LLM receives a predictable structure. The code field is

crucial for deterministic logic, allowing the agent to map the error to a pre-programmed

recovery strategy. The agent_action_required field provides explicit, high-level

instructions, which is a key differentiator from traditional API error handling.

The API Pattern that supports this is the Semantic Wrapper Pattern. Since most

legacy APIs do not return agent-friendly errors, a wrapper layer is implemented

between the LLM and the raw API. This wrapper intercepts the raw API response (e.g.,

HTTP 404, a Python exception, or a SOAP fault), translates it into the standardized

structured error format defined above, and then passes the structured error back to the

LLM as the tool's output. This abstraction shields the LLM from the complexity and

inconsistency of the underlying systems, ensuring a consistent error language across all

available tools.

Implementation considerations center on failure classification. Errors must be

categorized into three main types: Transient (e.g., network timeout, temporary rate

limit), Permanent/Deterministic (e.g., invalid input, resource not found,

authentication failure), and Agent-Induced (e.g., malformed function call arguments,

logical error in the agent's plan). The classification determines the is_retryable and

agent_action_required fields. For Transient errors, the wrapper should suggest a retry

with an Exponential Backoff with Jitter strategy. For Permanent errors, the wrapper

must clearly state the required agent action, such as requesting new credentials or re-

evaluating the initial query.

Byrddynasty | Agentic AI Strategy

11

Framework and Standards Evidence The major LLM platforms and standards have

converged on the necessity of structured error handling, though the implementation

details vary.

OpenAI Function Calling: While OpenAI's core function calling mechanism

primarily focuses on the input schema, the tool output is a string that the developer

controls. Best practice dictates that developers return a JSON string conforming to

a custom error schema (like the one detailed above) when a tool fails. The LLM then

ingests this structured JSON as the tool's result. For example, if a get_stock_price

tool fails due to an invalid ticker, the developer's code returns: {"status": "error",

"error": {"code": "INVALID_INPUT", "message": "Ticker symbol 'XYZ' is not recognized.",

"retry_guidance": {"is_retryable": false, "agent_action_required": "REPHRASE_QUERY"}}} .

The LLM reads this and understands it must ask the user for a valid ticker, rather

than simply retrying the API call.

Anthropic Tool Use (Claude): Anthropic's approach emphasizes providing rich,

detailed information in the tool output. Their documentation explicitly guides

developers to handle errors by returning a descriptive string or a structured object in

the tool result. The key difference is the emphasis on natural language

interpretability within the structured output. Anthropic's system often relies on the

LLM's superior reasoning to parse the error and determine the next step, but a

structured JSON output is still the most reliable method for deterministic recovery.

Google Function Calling (Gemini API): Google's approach leverages the

OpenAPI 3.0 Schema specification for defining both function inputs and outputs.

This tight integration with a mature API standard naturally encourages the definition

of response schemas that include error objects. By defining a specific response

schema for the tool, the developer can enforce the structured error contract, making

the error handling more predictable and less reliant on the LLM's ability to parse

unstructured text.

OpenAPI/JSON Schema: These standards are the bedrock. JSON Schema is used

to define the exact structure of the error payload, ensuring type safety and

predictability. OpenAPI (formerly Swagger) allows the tool developer to document

the possible error responses (e.g., a 404 response with a specific error body) directly

in the tool's specification. This documentation is then ingested by the agent

framework, providing the LLM with a complete "contract" that includes failure modes

before the tool is even called.

1.

2.

3.

4.

Byrddynasty | Agentic AI Strategy

12

Agent Skills Standard (Conceptual): Emerging standards for agent skills often

propose a dedicated, standardized Error Object that is mandatory for all tool

implementations. This object typically includes fields for error_type (e.g.,

ToolExecutionError , AuthenticationError), severity (e.g., CRITICAL , WARNING), and a

standardized set of recovery instructions that map directly to the agent's internal

state machine (e.g., RETRY_IMMEDIATELY , ABORT_PLAN , REQUEST_USER_INPUT). This

standardization is the future of agent tool interoperability.

Practical Implementation Tool engineers face key design decisions when

implementing robust error handling, primarily revolving around the Usability-

Flexibility Tradeoff.

Design

Decision

Usability (Agent

Experience)

Flexibility (Tool

Developer)
Tradeoff Analysis

Error

Granularity

Coarse-grained, high-

level codes (e.g.,

INVALID_INPUT) are

easier for the LLM to map

to a recovery plan.

Fine-grained, specific

codes (e.g.,

INVALID_TICKER_FORMAT ,

TICKER_NOT_FOUND)

provide more diagnostic

detail.

Best Practice: Use

coarse-grained codes

for the LLM's primary

decision-making, but

include fine-grained

codes in the message

or details for

advanced debugging or

logging.

Retry

Guidance

Explicit boolean

is_retryable and

integer

suggested_delay_seconds

provide deterministic

instructions.

Relying on the LLM to

infer retryability from

the error message

offers maximum

flexibility for novel

errors.

Best Practice: Always

provide explicit,

deterministic guidance.

LLMs are poor at

inferring retry logic

reliably. Use the

agent_action_required

field for non-retryable

errors.

Error

Translation

A strict Semantic

Wrapper that translates

all native errors into a

single, standardized

agent-friendly format.

Returning the raw,

native API error (e.g., a

full stack trace or a

vendor-specific JSON

object).

Best Practice: The

wrapper is mandatory.

Raw errors are noise to

the LLM and introduce

non-determinism. The

5.

Byrddynasty | Agentic AI Strategy

13

Design

Decision

Usability (Agent

Experience)

Flexibility (Tool

Developer)
Tradeoff Analysis

wrapper ensures a

consistent error

contract across all

tools.

Decision Framework: The Agent Recovery Loop

Detection: The tool output is checked for the presence of the standardized error

object.

Classification: The error.code is used to classify the failure as Transient,

Permanent, or Agent-Induced.

Action Determination:

If Transient and is_retryable is true: Initiate an exponential backoff retry.

If Permanent or is_retryable is false: Consult agent_action_required .

Recovery Execution:

If REPHRASE_QUERY : The agent uses the error.message to refine the input

parameters and re-call the tool.

If AUTHENTICATE_USER : The agent stops the current plan and initiates a user-facing

authentication flow.

If ABORT_PLAN : The agent reports the failure to the user and terminates the

current task.

This structured guidance ensures that the LLM's role is simplified to interpreting a

predictable error contract, rather than performing complex, non-deterministic error

analysis. The tradeoff favors usability and reliability over the tool developer's

flexibility to return arbitrary error formats.

Common Pitfalls * Pitfall: Returning Raw API Errors. Exposing the LLM to the

native, vendor-specific error messages (e.g., a raw AWS SDK exception or a database

connection error). * Mitigation: Implement a mandatory Semantic Wrapper Pattern

1.

2.

3.

◦

◦

4.

◦

◦

◦

Byrddynasty | Agentic AI Strategy

14

to translate all underlying errors into a single, standardized, agent-interpretable JSON

error contract with clear, high-level error codes.

Pitfall: Ambiguous Error Codes. Using generic codes like FAILURE or

ERROR_OCCURRED that do not convey the nature of the failure (e.g., is it a transient

network issue or a permanent authentication problem?).

Mitigation: Define a comprehensive set of standardized error codes that

explicitly categorize the failure type (e.g., TRANSIENT_RATE_LIMIT ,

PERMANENT_AUTH_FAILURE , INVALID_INPUT_SCHEMA).

Pitfall: Missing Retry Guidance. Failing to include explicit is_retryable and

agent_action_required fields in the error response.

Mitigation: Make the retry_guidance object mandatory in the error schema.

Force the tool developer to explicitly state whether the error is transient and what

the agent's next step should be (e.g., REPHRASE_QUERY , ABORT_PLAN).

Pitfall: Inconsistent Error Structure. Different tools returning errors in different

formats (e.g., one uses a top-level error key, another uses a status_code field).

Mitigation: Enforce a single, global JSON Schema for all tool error responses

across the entire agent platform, ensuring a uniform contract for the LLM.

Pitfall: Over-reliance on LLM Reasoning. Assuming the LLM can infer complex

recovery logic from a detailed natural language message alone.

Mitigation: Prioritize deterministic, machine-readable fields (codes,

booleans, enums) over verbose natural language descriptions for core decision-

making. The natural language message should only serve as supplementary

context.

Real-World Use Cases Robust error handling is critical in scenarios where tool

execution is complex, involves external systems, or is part of a high-value transaction.

Financial Trading Agent: A tool to execute a stock trade fails.

Failure Mode (Poor Design): The tool returns a raw HTTP 503 error with a

generic message. The agent, unable to classify the error, retries immediately,

exacerbating the issue (e.g., hitting a rate limit or causing a duplicate trade).

•

◦

•

◦

•

◦

•

◦

1.

◦

Byrddynasty | Agentic AI Strategy

15

Success Story (Robust Design): The tool returns a structured error with code:

TRANSIENT_RATE_LIMIT , is_retryable: true , and suggested_delay_seconds: 60 . The

agent automatically implements a 60-second exponential backoff before retrying,

ensuring the trade is eventually executed without manual intervention or duplicate

orders.

E-commerce Order Fulfillment Agent: An agent uses a tool to check inventory for

a product.

Failure Mode (Poor Design): The tool returns a Python exception string

because the product ID was malformed. The agent, confused by the stack trace,

hallucinates a success message or asks the user an irrelevant question.

Success Story (Robust Design): The tool returns code: INVALID_INPUT_SCHEMA ,

is_retryable: false , and agent_action_required: REPHRASE_QUERY . The agent uses

the error message to identify the malformed ID, corrects the input based on its

memory, and successfully re-calls the tool.

Customer Support Agent (CRM Integration): An agent attempts to log a new

case in a CRM system.

Failure Mode (Poor Design): The tool returns a generic "Access Denied" error.

The agent cannot distinguish between a temporary token expiration and a

permanent permission issue. It repeatedly tries the same failed action.

Success Story (Robust Design): The tool returns code: PERMANENT_AUTH_FAILURE ,

is_retryable: false , and agent_action_required: AUTHENTICATE_USER . The agent

immediately halts the case logging, notifies the user or system administrator of

the authentication requirement, and initiates the token refresh flow, preventing

resource waste.

Sub-skill 8.1c: Function Calling Protocols - OpenAI Function

Calling, Anthropic Tool Use, Google Function Calling, Protocol

Differences and Best Practices

Conceptual Foundation The foundation of function calling protocols lies in the

convergence of three core software engineering concepts: API Design, Semantic

Interoperability, and Structured Data Generation. At its heart, function calling is a

specialized form of Remote Procedure Call (RPC), where the LLM acts as the client

that generates the call signature, and the host application acts as the server that

◦

2.

◦

◦

3.

◦

◦

Byrddynasty | Agentic AI Strategy

16

executes the procedure [1]. The LLM's ability to map natural language intent to a

formal, executable API call is the key innovation.

Semantic Interoperability is achieved through the use of JSON Schema to define

the tool's interface. This schema serves as a formal contract that is machine-readable

for the host application (for validation and execution) and human-readable for the LLM

(via its training data and system prompt context) [2]. This shared, structured definition

allows the LLM to understand the meaning (semantics) of the tool and its parameters,

enabling reliable translation from user intent to code execution. This is a critical step

toward a true semantic layer for agentic systems, where capabilities are described not

just syntactically, but by their function and purpose [6].

The theoretical foundation is rooted in the idea of Tool-Augmented Language Models

(TALMs), which overcome the inherent limitations of LLMs (e.g., lack of real-time data,

inability to perform complex calculations) by granting them access to external,

deterministic systems [9]. The protocol itself manages the control flow between the

non-deterministic LLM (the planner) and the deterministic external environment (the

executor). The core loop involves the LLM generating a tool call, the host executing it,

and the result being returned to the LLM as a new context, allowing for iterative, multi-

step reasoning and action [3].

Technical Deep Dive Function calling protocols operate on a fundamental request-

response loop that integrates the non-deterministic LLM with the deterministic

execution environment. The core mechanism is the LLM's ability to generate a

structured, machine-readable output instead of a natural language response when it

determines an external action is necessary [1].

The protocol begins with the host application sending the LLM a list of available tools,

each defined by a JSON Schema. This schema is critical, as it formally specifies the

tool's name, a natural language description, and the structure of its input parameters.

For example, the OpenAI protocol uses a tools array in the API request, where each

tool object contains a function object with name , description , and a parameters object

that is a valid JSON Schema [2].

If the LLM decides to use a tool, it halts its natural language generation and returns a

structured response containing a tool_calls array. Each call object specifies the

function name and the arguments as a JSON string. The host application then parses

this JSON, validates it against the original schema, and executes the corresponding

Byrddynasty | Agentic AI Strategy

17

function. This is where the protocol difference emerges: OpenAI's protocol is

primarily a stateless, single-turn request-response for the tool call itself, relying on

the host to manage the execution and re-insertion of the result into the next turn of the

conversation [3].

In contrast, protocols like Anthropic's MCP are designed as a stateful, multi-primitive

client-server model. MCP uses JSON-RPC 2.0 over various transports, defining

explicit methods like tools/list and tools/call . This allows for dynamic tool discovery

and a more robust, standardized way to handle context and lifecycle management,

including real-time updates via notifications [5]. Google's A2A further abstracts this into

an Agent-to-Agent communication layer, where the protocol manages the network and

delegation between independent agents, making the remote agent appear as a local

tool to the calling agent [4]. The common thread is the reliance on a formal, structured

data contract (JSON Schema or a similar structured format) to bridge the gap between

natural language intent and code execution.

Framework and Standards Evidence The major LLM providers have adopted distinct,

yet related, protocols for tool use, all leveraging structured data for reliability:

OpenAI Function Calling (JSON Schema): This is the most widely adopted

pattern. Tools are defined using a JSON object that strictly adheres to the JSON

Schema specification. The model's response contains a tool_calls array, each

element specifying the function name and a JSON object of arguments . The model is

trained to output this JSON structure reliably. json { "type": "function", "name":

"get_weather", "parameters": { "type": "object", "properties": { "location": { "type":

"string" } }, "required": ["location"] } }

Anthropic Tool Use (Model Context Protocol - MCP): Anthropic's approach is

more protocol-centric, built on a client-server architecture using JSON-RPC over

various transports [5]. MCP defines explicit primitives like Tools , Resources , and

Prompts , each with methods for discovery (tools/list) and execution (tools/call).

This is a more comprehensive standard for context exchange, not just function

invocation.

Google Function Calling (Agent-to-Agent - A2A): Google's focus is on agent

interoperability rather than just model-to-tool. A2A defines a lightweight, open

protocol for agents to Discover, Delegate, and Coordinate tasks [4]. While the

underlying tool calls may use JSON Schema, A2A's protocol is higher-level, defining

1.

2.

3.

Byrddynasty | Agentic AI Strategy

18

how an A2AServer exposes an agent's capabilities and how a RemoteA2aAgent client

consumes them over a network, abstracting the network layer.

OpenAPI Specification: Many tool frameworks, including those built on OpenAI's

API, use the OpenAPI (Swagger) specification to automatically generate the

required JSON Schema for tool definitions [10]. This allows developers to define their

API once and use it for both traditional REST clients and LLM agents, promoting

consistency and reusability.

Agent Skills Standard: Emerging standards, often based on a combination of

OpenAPI and JSON Schema, aim to create a universal format for describing agent

capabilities, allowing for seamless tool sharing and model agnosticism, addressing

the M×N problem inherent in provider-specific protocols [3].

Practical Implementation Tool engineers face a core usability-flexibility tradeoff

when designing tools for agents. Highly specific, granular tools (high flexibility) require

complex, multi-step reasoning from the agent, increasing failure points. Broad, high-

level tools (high usability) simplify the agent's task but may limit the agent's ability to

handle nuanced requests.

Decision Framework: Granularity vs. Orchestration

Decision

Point
Granular Tools (High Flexibility) High-Level Tools (High Usability)

Tool

Example

get_user_id(email) ,

fetch_order_history(id)

get_customer_summary(email)

Agent

Task

Must chain multiple calls and manage

intermediate state.

Single call, tool handles internal

orchestration.

Best

Practice

Use for complex, multi-step workflows

where the agent needs to make

decisions between steps (e.g.,

debugging, planning).

Use for common, atomic business

processes (e.g., "book flight," "check

inventory").

Implementation Best Practices:

Semantic Naming: Tool names and parameter names must be clear, descriptive,

and semantically unambiguous (e.g., create_user_account is better than post_data).

4.

5.

•

Byrddynasty | Agentic AI Strategy

19

Schema Simplicity: Keep the JSON Schema as simple as possible. Avoid overly

deep nesting or complex conditional logic unless absolutely necessary. The LLM

performs best with flat, well-defined schemas [2].

Input/Output Symmetry: Ensure the tool's description clearly explains what the

tool returns (the output schema), as this is crucial for the LLM's subsequent

reasoning step.

Guardrails and Timeouts: Implement strict execution guardrails on the host

application side, including rate limits and timeouts, to prevent runaway tool calls or

accidental denial-of-service against external APIs [7].

Common Pitfalls * Pitfall 1: Ambiguous Tool Descriptions (Semantic Drift):

Providing vague or overlapping descriptions for tool names and parameters. Mitigation:

Ensure every tool and parameter has a clear, concise, and unique natural language

description. Use examples in the description to clarify intent and expected input/output

formats. * Pitfall 2: Schema Mismatch and Validation Failure: The LLM generates a

JSON object that does not strictly conform to the provided JSON Schema (e.g., wrong

data type, missing required field). Mitigation: Implement strict, server-side JSON

Schema validation before tool execution. Use additionalProperties: false and required

fields aggressively in the schema to enforce structure, as seen in the OpenAI example

[2]. * Pitfall 3: Tool Call Failures and Lack of Error Handling: The external API call

fails, and the agent does not receive a meaningful error message or recovery path.

Mitigation: Tools must return structured, semantic error messages (e.g., a JSON object

with error_code and user_message) to the LLM. The agent's system prompt should

include instructions on how to interpret and respond to these errors (e.g., retry, inform

the user, or suggest an alternative tool) [7]. * Pitfall 4: Over-tooling and Context

Bloat: Providing the LLM with too many tools, which increases the prompt size, token

usage, latency, and the likelihood of the LLM choosing the wrong tool. Mitigation:

Implement tool routing or tool retrieval (RAG for tools) to dynamically select only

the most relevant subset of tools for the current user query and context [8]. * Pitfall 5:

State Management Confusion: Designing stateless tools for a stateful conversation,

leading to the agent forgetting context or requiring redundant inputs. Mitigation: Clearly

define which tools are stateless (e.g., get_weather) and which require session context

(e.g., add_item_to_cart). For stateful operations, ensure the tool's output or the agent's

memory explicitly manages and updates the session state.

•

•

•

Byrddynasty | Agentic AI Strategy

20

Real-World Use Cases The quality of tool engineering is critical in real-world agentic

systems, particularly in domains requiring high accuracy and security:

Customer Service Automation (Success Story): A well-engineered agent uses a

single, high-level tool like get_order_status(order_id) with a clear schema. Success:

The agent reliably extracts the order_id from natural language, calls the tool, and

provides a precise, real-time status update, leading to high customer satisfaction and

low operational cost.

Financial Trading Agent (Failure Mode): A poorly designed agent is given two

similar tools: get_stock_price(ticker) and get_historical_data(ticker) . Failure:

When asked "What is the price of AAPL?", the LLM sometimes hallucinates a call to

get_historical_data with incorrect date parameters, or calls both unnecessarily,

wasting tokens and time. This semantic ambiguity leads to a reasoning loop

failure and potentially costly delays in a time-sensitive environment [7].

Code Generation and Debugging (Success Story): Agents like those in the

Agent Development Kit (ADK) use the A2A protocol to delegate tasks. A "Code

Planner Agent" delegates the execution of a test suite to a separate "Test Runner

Agent" via A2A. Success: This separation of concerns allows the Code Planner to

focus on reasoning, while the Test Runner handles the complex, environment-specific

execution, ensuring a robust and scalable development workflow [4].

Internal Knowledge Retrieval (Failure Mode): An agent is given a

search_database(query) tool. Failure: The LLM, when asked a question it knows the

answer to internally, still calls the tool, leading to unnecessary tool invocation and

increased latency. This is a common failure mode that highlights the need for the

LLM to be trained to only call the tool when its internal knowledge is insufficient [8].

Sub-skill 8.1: Tool Engineering as Interface Design - Semantic

Usability and Discoverability

Conceptual Foundation Tool engineering for autonomous agents is fundamentally an

exercise in interface design, shifting the traditional paradigm from Human-Computer

Interaction (HCI) to Agent-Tool Interaction (ATI). The tool's definition—its name,

description, and parameter schema—serves as the agent's User Interface (UI), and its

quality directly determines the agent's ability to discover, understand, and correctly

utilize the available capabilities. The core concepts are drawn from established software

engineering disciplines, particularly API design (e.g., REST, RPC), where principles like

1.

2.

3.

4.

Byrddynasty | Agentic AI Strategy

21

clarity, consistency, and idempotency are paramount. However, these principles are

overlaid with concepts from semantics and natural language processing, as the LLM

must interpret the interface through linguistic reasoning rather than visual or manual

interaction. This necessitates a focus on the linguistic and structural properties of the

interface, making the tool definition a form of executable documentation.

The theoretical foundation for this discipline rests on the concept of affordance,

adapted from ecological psychology. In the context of ATI, affordance refers to the

perceived and actual properties of the tool that determine how an agent can use it to

achieve a goal. A well-designed tool schema affords correct usage by providing clear

semantic cues. Equally critical is the concept of semantic interoperability, which

ensures that the agent's internal reasoning engine can reliably map its high-level goals

and contextual state to the tool's function signature and required parameters. This

mapping process is often guided by emerging theoretical frameworks, such as the

Theory of Agents as Tool-Use Decision-Makers [1], which posits that optimal agent

behavior emerges when tool invocation aligns precisely with the agent's knowledge

boundary, ensuring tools are only called to acquire missing, necessary information or

execute a required action.

The ultimate goal of tool engineering is to maximize semantic usability, which is the

measure of how easily and reliably an LLM can infer a tool's purpose, preconditions,

postconditions, and side effects solely from its linguistic and structural definition. This

requires applying principles like the Principle of Least Astonishment to the tool's

behavior, ensuring that the tool's function name and description accurately predict its

outcome. The tool definition becomes the Agent Experience (AX), and its design must

prioritize the agent's reasoning process. For instance, a tool that is named

get_user_data but also triggers a billing event violates semantic usability, as the side

effect is not clearly afforded by the name. Therefore, effective tool design requires a

holistic view of the tool as a linguistic, structural, and behavioral contract with the

autonomous agent.

Technical Deep Dive The technical core of systematic tool engineering is the use of

JSON Schema as the lingua franca for defining the tool's interface. This schema is a

declarative contract that specifies the tool's name, a detailed description, and the

structure of its input parameters. The LLM is not merely generating text; it is

performing a structured prediction task, classifying the user's intent and mapping it to a

function signature defined by the schema. The schema's descriptive fields, such as

Byrddynasty | Agentic AI Strategy

22

description , are critical for the LLM's reasoning, while the structural fields, such as

type , properties , required , enum , and pattern , enforce the technical constraints of

the underlying API.

A typical tool invocation follows a specific protocol: 1) The agent receives a user

prompt. 2) The LLM's reasoning engine, guided by the tool schemas provided in the

context, decides whether to respond directly or call a tool. 3) If a tool is called, the LLM

outputs a structured JSON object conforming to the schema, which is then intercepted

by the agent runtime. 4) The runtime executes the corresponding function with the

provided arguments. 5) The function's result (often a JSON or text string) is returned to

the LLM as a tool observation or function result. 6) The LLM uses this observation to

formulate a final, informed response to the user. This request-response cycle is the

fundamental API pattern for agent-tool interaction.

Schema Example (Conceptual):

{
 "type": "function",
 "function": {
 "name": "search_product_catalog",
 "description": "Searches the e-commerce product catalog for items matching a query. Use this only when the user asks to find products.",
 "parameters": {
 "type": "object",
 "properties": {
 "query": {
 "type": "string",
 "description": "The search term, e.g., 'red running shoes'."
 },
 "max_price": {
 "type": "number",
 "description": "The maximum price in USD for filtering results."
 },
 "category": {
 "type": "string",
 "enum": ["electronics", "apparel", "home_goods"],
 "description": "Optional category filter."
 }
 },
 "required": ["query"]
 }
 }
}

Byrddynasty | Agentic AI Strategy

23

Implementation considerations include namespacing and versioning. As tool libraries

grow, namespacing (e.g., finance.get_stock_price vs. hr.get_employee_salary) is crucial

for preventing collisions and improving LLM clarity. Versioning is managed by including

version metadata in the schema or by using versioned tool names, allowing the agent to

reason about tool deprecation and compatibility. The use of semantic tags within the

schema's description (e.g., mentioning side_effects: none or latency: high) further

enriches the interface, providing the agent with non-functional requirements necessary

for sophisticated planning and execution. The technical deep dive reveals that the tool

interface is a highly constrained, structured API designed not for human developers, but

for the LLM's internal reasoning engine.

Framework and Standards Evidence The systematic approach to tool engineering is

validated by its adoption across major LLM frameworks, each implementing a structured

protocol for tool definition and invocation:

OpenAI Function Calling (Tools): This is the foundational standard, utilizing

JSON Schema to define tool signatures. The model is fine-tuned to output a

structured JSON object containing the function name and arguments, rather than

generating a natural language response.

Example: A get_weather tool is defined with a type: object parameter schema,

requiring a location (string) and an optional unit (enum: celsius , fahrenheit).

The model's output is a guaranteed-valid JSON object like {"name": "get_weather",

"arguments": {"location": "Boston, MA", "unit": "celsius"}} .

Anthropic Tool Use (Model Context Protocol - MCP): Anthropic's approach,

often formalized under the Model Context Protocol (MCP) [2], uses an XML-like tag

structure within the prompt to define tools and to receive tool calls. While the

underlying definition is still structured (often implicitly or explicitly using a schema),

the interaction is mediated by specific XML tags (<tool_use> , <tool_result>) that the

model is trained to generate and interpret.

Example: The model might generate <tool_use> <tool_name>search_database</

tool_name> <parameters> <query>latest stock price for GOOG</query> </parameters> </

tool_use> . This structured output is then parsed by the system.

Google Function Calling (Gemini API): Google's implementation is highly similar

to OpenAI's, also relying on JSON Schema for tool definition. A key feature is the

ability to define multiple functions and have the model select and call them in parallel

1.

◦

2.

◦

3.

Byrddynasty | Agentic AI Strategy

24

or sequentially within a single turn, demonstrating a focus on efficiency and complex

task decomposition.

Example: The model can respond with a list of function calls, enabling it to

simultaneously call get_user_profile and fetch_recent_orders if both are

necessary for the user's request.

OpenAPI Specification (OAS): The OpenAPI Specification (formerly Swagger) is

the industry standard for defining RESTful APIs. It is frequently used as the source-

of-truth for generating LLM tool schemas. Tools can be automatically generated by

parsing an existing OAS document, mapping API endpoints to LLM functions.

Example: An OAS definition for a /products/{id} GET endpoint is automatically

translated into an LLM tool named get_product_details with a required id

parameter.

Agent Skills Standard: This is an emerging, open format designed to package

domain-specific capabilities for agents. It goes beyond simple function signatures by

including instructions, resources, and optional scripts in a standardized folder

structure. This standard emphasizes discoverability by requiring rich metadata and

clear usage instructions, making it easier for different agent frameworks to share and

utilize capabilities.

Example: An Agent Skill might define a data_analysis capability, including a

Python script, a dependency list, and a detailed Markdown description of when

and how to invoke the analysis.

Practical Implementation Effective tool engineering requires making key design

decisions that balance the competing demands of usability for the agent (AX) and

flexibility for the developer (DX).

Key Design Decisions for Tool Engineers:

Granularity of Function: Decide between Coarse-Grained (fewer, complex tools

that map to high-level user intents, e.g., book_flight) and Fine-Grained (many

simple tools that map to low-level API calls, e.g., search_flights , select_seat ,

confirm_booking). Coarse-grained tools reduce the number of turns and reasoning

steps for the agent but limit flexibility.

State Management: Determine if the tool should be Stateless (all necessary

context passed in parameters) or Stateful (relying on a session ID or previous

◦

4.

◦

5.

◦

1.

2.

Byrddynasty | Agentic AI Strategy

25

calls). Stateless tools are easier for the LLM to reason about, as they are idempotent

and self-contained. Stateful tools are necessary for complex transactions but require

the agent to reliably manage and pass session tokens.

Input/Output Structure: Choose between simple primitive types and complex

nested objects in the schema. While simple types are easier for the LLM to generate,

complex, nested objects (using allOf , oneOf , and detailed object properties)

provide superior semantic guidance and enforce stricter data contracts.

Usability-Flexibility Tradeoffs:

Design

Choice

Usability (AX) for

Agent

Flexibility (DX) for

Developer
Tradeoff Analysis

Coarse-

Grained

Tools

High: Fewer calls,

simpler planning, less

token usage.

Low: Harder to reuse

components, complex

internal logic.

Prioritize AX: Agents

struggle with multi-step

planning; abstracting

complexity into a single

tool is often beneficial.

Strict JSON

Schema

High: Clear

constraints, reliable

argument generation,

less hallucination.

Low: Requires more

effort to define and

maintain complex

schemas.

Prioritize AX:

Reliability is paramount.

The upfront cost of a

strict schema is offset by

reduced runtime errors.

Rich

Descriptions

High: Excellent

discoverability,

accurate intent

mapping.

Low: Requires

disciplined, verbose

documentation.

Prioritize AX: The

description is the agent's

UI. Never compromise

on descriptive quality.

Best Practices:

Semantic Naming: Use verb-noun pairs that clearly indicate the action and object

(e.g., create_user_account , not user_op).

Defensive Design: Implement robust input validation within the tool's execution

code, as the LLM may still generate syntactically correct but semantically invalid

arguments (e.g., a negative quantity).

3.

•

•

Byrddynasty | Agentic AI Strategy

26

Asynchronous Patterns: For long-running operations, design the tool to return an

immediate status (e.g., job_id) and provide a separate check_job_status tool,

preventing the agent from blocking the conversation.

Common Pitfalls * Pitfall: Vague or Ambiguous Descriptions. Using generic

names (e.g., process_data) or sparse descriptions that fail to convey the tool's exact

function, preconditions, and side effects. * Mitigation: Enforce a strict documentation

standard. Descriptions must be rich, including a clear "when to use" clause and

explicit mention of any external side effects (e.g., "Sends an email to the user,

consuming a credit").

Pitfall: Overly Granular or "Chatty" Tools. Creating many small tools that require

excessive sequential calls (e.g., separate tools for get_user_id , get_user_email ,

send_email).

Mitigation: Design tools around user intent or atomic business actions (e.g.,

a single send_personalized_email(user_name, subject, body) tool). Prioritize coarse-

grained tools that encapsulate complex logic.

Pitfall: Schema Mismatch and Type Ambiguity. Using generic types like string

for parameters that should be constrained (e.g., a date, an enum, or a specific ID

format).

Mitigation: Leverage the full power of JSON Schema: use format (e.g.,

date-time , email), enum , pattern (regex), and minimum / maximum constraints to

provide the LLM with precise type information.

Pitfall: Non-Idempotent Tools Without Warning. Designing tools that cause

irreversible state changes (e.g., delete_record) but failing to warn the agent or

requiring explicit confirmation.

Mitigation: Clearly mark non-idempotent tools in the description. For critical

actions, implement a two-step confirmation pattern where the tool first

returns a confirmation prompt, and the agent must explicitly call a second tool to

execute.

•

•

◦

•

◦

•

◦

Byrddynasty | Agentic AI Strategy

27

Pitfall: Poor Error Handling and Opaque Responses. Tools returning only

generic HTTP status codes or unstructured text error messages.

Mitigation: Tools must return structured, semantic error objects (e.g., JSON with

error_code , error_type , and a human_readable_message) that the agent can parse

and reason about for recovery or user communication.

Pitfall: Context Overload in Tool Responses. Returning massive, irrelevant data

structures (e.g., a full database dump) when only a few fields are needed.

Mitigation: Implement projection or field selection in the tool's API (e.g., a

fields parameter) to allow the agent to request only the necessary data,

minimizing context window usage and improving focus.

Real-World Use Cases 1. Financial Transaction Processing (Criticality: High

Reliability) * Success Story: A well-engineered execute_wire_transfer tool with a

strict JSON Schema requiring recipient_account_number (pattern-validated string),

amount (minimum/maximum constraints), and a mandatory confirmation_code . The rich

description explicitly states the irreversible nature of the action. This high semantic

usability ensures the agent only attempts the transfer when all data is present and

validated, leading to a high success rate and preventing financial loss. * Failure Mode:

A poorly designed transfer_funds tool that accepts a single, unstructured details

string. The agent might hallucinate the argument format or omit a critical field like the

currency, leading to failed transactions, security risks, or incorrect debits that require

costly human intervention to reverse.

2. Enterprise Data Retrieval (Criticality: Discoverability and Precision) *

Success Story: A suite of tools defined using the Agent Skills standard, where each

tool (e.g., query_crm , fetch_erp_inventory) has a detailed description and a parameter

schema that supports complex filtering (e.g., filter_by object). The agent can

semantically search the tool library, find the most relevant tool, and construct a precise

query, minimizing the data returned and improving reasoning efficiency. * Failure

Mode: A single, monolithic access_database tool with a vague description. The agent

struggles to determine the correct query language or data source, resulting in the tool

being called with irrelevant or incorrect parameters, leading to context overload from

massive, unfiltered data dumps.

3. Software Deployment Automation (Criticality: Idempotency and State

Management) * Success Story: A toolset where deployment actions are designed to

•

◦

•

◦

Byrddynasty | Agentic AI Strategy

28

be idempotent (e.g., ensure_service_running(service_name)). The tool's description

clearly states that calling it multiple times with the same parameters has the same

effect as calling it once. This allows the agent to safely retry steps after a failure without

worrying about creating duplicate resources. * Failure Mode: A non-idempotent

create_server tool. If the agent's connection drops after the server is created but before

the success message is received, the agent might retry the call, resulting in the creation

of duplicate, unmanaged infrastructure and incurring unnecessary cloud costs. The lack

of clear affordance for idempotency leads to resource sprawl.

Sub-Skill 8.2: Dynamic Tool Discovery and

Composition

Sub-skill 8.2a: Tool Registries and Catalogs - Searchable tool

catalogs, indexing by capability and domain, metadata standards,

versioning

Conceptual Foundation The foundation of agent tool registries is rooted in established

software engineering paradigms, primarily Service-Oriented Architecture (SOA) and

API Management. In SOA, a service registry (or repository) is a central component

that stores metadata about available services, enabling dynamic discovery and binding.

The agent tool registry is the modern, LLM-centric evolution of this concept, where the

"service" is an external function or API endpoint, and the "consumer" is an autonomous

agent. This transition requires shifting from machine-readable WSDL/UDDI to human-

readable, yet structured, descriptions like JSON Schema, optimized for the LLM's

reasoning process.

A critical theoretical underpinning is Semantic Web principles, specifically the concept

of metadata standardization. For an agent to intelligently select a tool, it must

understand the tool's intent and effect, not just its signature. This necessitates rich,

standardized metadata that goes beyond simple input/output types to include domain,

capability tags, pre-conditions, and post-conditions. The registry acts as a semantic

layer, translating raw API specifications into a format optimized for LLM reasoning and

retrieval. This is fundamentally a problem of Information Retrieval, where the agent's

Byrddynasty | Agentic AI Strategy

29

natural language query must be mapped to the most relevant tool definition in the

catalog, often using vector embeddings for semantic search.

Furthermore, the registry addresses the core software engineering challenge of

Dependency Management and Version Control. Just as package managers like npm

or Maven manage library dependencies, a tool registry manages the lifecycle of agent

capabilities. It ensures that agents can rely on a stable, versioned interface, allowing for

safe updates and rollbacks. The concept of Interface Segregation is also vital; the

registry should present a minimal, agent-optimized view of the tool (the function

signature and description) while abstracting away the complex implementation details

and execution environment from the LLM's decision-making process.

Finally, the registry embodies the principle of Loose Coupling. By centralizing tool

definitions, the registry allows tool developers to update implementations without

affecting the agents, and allows agents to be updated without needing to re-prompt for

every tool change. This decoupling is essential for building scalable, resilient agent

ecosystems where tools can be added, removed, or modified dynamically, ensuring the

overall system remains robust and adaptable to new capabilities.

Technical Deep Dive A tool registry is architecturally a specialized metadata repository

optimized for low-latency semantic search and version control. The core data structure

for a tool entry is typically a JSON object that wraps the standard API definition with

agent-specific metadata. At a minimum, this object includes: a unique tool_id , a

version string (e.g., SemVer), a rich natural language description , and the JSON

Schema for the function's input parameters. The registry's database is often a hybrid

system, using a relational or NoSQL store for structured metadata and a Vector

Database (e.g., Pinecone, Milvus) to store embeddings of the tool descriptions.

The registry protocol involves three key operations: Registration, Discovery, and

Retrieval. During Registration, a tool developer submits an OpenAPI specification or a

custom tool definition. The registry parses this, extracts the function signature and

description, generates a vector embedding of the description, and stores all

components. The Discovery phase is where the agent queries the registry with a natural

language intent. This query is embedded and used to perform a k-Nearest Neighbors

(k-NN) search in the vector database, returning the top k most semantically relevant

tool IDs. Finally, the Retrieval phase fetches the full, structured JSON Schema for the

selected tools, which is then passed to the LLM for parameter generation.

Byrddynasty | Agentic AI Strategy

30

Schema Example (Simplified Registry Entry):

{
 "tool_id": "com.corp.finance.get_balance",
 "version": "2.1.0",
 "domain": "Finance",
 "capability_tags": ["read", "account_data", "realtime"],
 "description": "Retrieves the current, real-time balance for a specified customer account. Requires the customer's unique ID.",
 "function_schema": {
 "name": "get_account_balance",
 "parameters": {
 "type": "object",
 "properties": {
 "customer_id": {"type": "string", "description": "The unique identifier for the customer."}
 },
 "required": ["customer_id"]
 }
 }
}

Implementation considerations include Indexing by Capability and Domain. Tools

are not just indexed by their description vector but also by structured fields like domain

and capability_tags . This allows for a two-stage filtering process: first, a structured

filter based on the agent's security scope or domain, followed by a semantic search on

the remaining subset. This combination ensures both security and relevance.

Furthermore, the registry must manage versioning by maintaining immutable records

for every tool version and providing a clear API for agents to request the latest stable

version or a specific, pinned version. This prevents the "brittle tool" problem where a

change in one tool breaks multiple downstream agents.

Framework and Standards Evidence The concept of a tool registry is evidenced

across major LLM frameworks, all converging on structured data formats for tool

definition:

OpenAI Function Calling: OpenAI pioneered the use of a simplified JSON Schema

for defining functions. The agent is provided with a list of tools , each containing a

type (always function), a name , a human-readable description , and a parameters

object which is a standard JSON Schema object defining the required and optional

inputs. This list acts as a micro-catalog for the current conversation, demonstrating

the core principle of structured capability definition.

1.

Byrddynasty | Agentic AI Strategy

31

Google Gemini Function Calling: Google's approach is highly similar, also

leveraging JSON Schema to define functions. A key difference is the strong emphasis

on using the full OpenAPI Specification for more complex, RESTful APIs. By

accepting an OpenAPI document, Google's framework effectively uses the API

specification itself as the tool registry entry, allowing for the direct ingestion of

existing API documentation into the agent ecosystem.

Anthropic Tool Use: Anthropic's Claude models use a tools block in the system

prompt, which also relies on structured definitions. While the underlying schema is

similar to JSON Schema, Anthropic places a significant emphasis on the quality of the

natural language description and encourages the use of input_examples to provide

the model with concrete, high-quality examples of how the tool should be used. This

highlights the importance of semantic richness in the registry's metadata for agent

performance.

OpenAPI Specification (OAS): OAS is the de facto standard for defining RESTful

APIs, and it serves as the foundational metadata standard for agent tool registries.

An OAS document provides the tool's name, description, endpoints, request/response

schemas, and versioning information. A tool registry often acts as a wrapper around

a collection of OAS documents, extracting the function-calling metadata (path,

method, parameters) and translating it into the LLM-specific schema format.

Agent Skills Standard (Conceptual): Emerging standards, often referred to as

Agent Skills or Model Context Protocol (MCP), are pushing for a more comprehensive

registry standard. These standards aim to include richer metadata like domain ,

cost_model , security_scope , and pre_conditions within the tool definition, moving

beyond simple function signatures to define the tool's full operational context,

thereby creating a truly searchable and filterable catalog.

Practical Implementation Key design decisions for a tool engineer center on the

Usability-Flexibility Tradeoff and the choice of versioning strategy. The core decision

is how much complexity to expose to the LLM. A high-usability approach involves

simplifying the tool schema (e.g., using only primitive types) and providing verbose,

high-quality natural language descriptions, making it easy for the LLM to use but

limiting the tool's functional flexibility. A high-flexibility approach exposes complex,

nested JSON Schemas and allows for multiple endpoints, which is powerful but

increases the cognitive load and failure rate for the LLM.

2.

3.

4.

5.

Byrddynasty | Agentic AI Strategy

32

Decision Framework:

Usability vs. Flexibility

High Usability (Agent-

Centric)

High Flexibility (Developer-

Centric)

Tool Schema Simplified, flat JSON

Schema with minimal

nesting.

Full OpenAPI/JSON Schema

with complex types and

references.

Description Long, detailed, use-case-

focused natural language.

Concise, technical description of

API contract.

Registry Indexing Semantic search on

description and capability

tags.

Exact-match search on function

name and path.

Best Practice Use for general-purpose

agents and high-volume

tasks.

Use for specialized agents and

complex enterprise APIs.

For versioning, the engineer must choose between Semantic Versioning (SemVer)

and Behavioral Versioning. SemVer (MAJOR.MINOR.PATCH) is standard for API contracts,

ensuring backward compatibility. However, an LLM's behavior can change even if the API

contract does not (e.g., a change in the tool's underlying data source). Therefore, best

practice is to implement Behavioral Versioning within the registry's metadata,

tracking not just the API version but also the version of the tool definition and the

underlying data model, ensuring that the agent is aware of any change that might affect

its reasoning, even if the function signature remains constant. The registry must

enforce strict immutability for all registered versions.

Common Pitfalls * Tool Collision and Ambiguity: When two or more tools have

similar names or descriptions (e.g., get_weather and check_forecast), the LLM struggles

to choose, leading to incorrect function calls. Mitigation: Enforce unique, highly specific

tool names and require rich, non-overlapping descriptions that detail the tool's unique

value proposition and side effects. * Versioning Chaos: Lack of semantic versioning

for tools, causing agents to break when an underlying API changes its contract.

Mitigation: Mandate strict Semantic Versioning (SemVer) for all tool definitions

(e.g., v1.0.0). The registry must support version-locking and provide a clear

deprecation path for older versions. * Insufficient Metadata: Tools are only indexed

by name and schema, making semantic search ineffective. Mitigation: Require

mandatory, structured metadata fields such as domain , capability_tags ,

Byrddynasty | Agentic AI Strategy

33

rate_limit_policy , and cost_per_call to enable intelligent filtering and agent decision-

making. * Stale Tool Definitions: The tool definition in the registry does not match

the actual, deployed API endpoint. Mitigation: Implement automated health checks

and reconciliation mechanisms that periodically validate the registry's schema against

the live API's OpenAPI specification, flagging or disabling stale entries. * Poor

Discoverability/Indexing: The registry only supports exact-match search, making it

useless for natural language queries. Mitigation: Implement a vector database for

semantic indexing of tool descriptions, allowing agents to query the catalog using

natural language intent rather than exact keywords. * Lack of Access Control: All

agents can see and potentially call all tools, leading to security and compliance risks.

Mitigation: Integrate the registry with an Identity and Access Management (IAM)

system, indexing tools by required permissions and filtering the catalog based on the

querying agent's identity and role.

Real-World Use Cases 1. Enterprise API Integration (Success Story): A large

financial institution uses a centralized tool registry to expose hundreds of internal

microservices (e.g., get_customer_balance , initiate_wire_transfer) to an internal AI

agent platform. The registry indexes tools by domain (e.g., 'Compliance', 'Trading',

'Retail Banking') and security_level . Success: Agents can dynamically discover and

securely invoke the correct, versioned API based on the user's natural language request

and the agent's IAM role, ensuring compliance and preventing unauthorized access. 2.

FinTech Compliance and Auditing (Failure Mode): A FinTech company's agent

platform relies on ad-hoc tool injection. A critical API for regulatory reporting

(generate_quarterly_report) is updated, changing a required parameter from date_range

to start_date and end_date . Failure: Because the tool definition was not versioned and

centrally managed, the agent's prompt was not updated, leading to the LLM

hallucinating the old parameter name. This resulted in silent API failures and a critical

compliance reporting delay, demonstrating the necessity of strict versioning and

automated schema validation in the registry. 3. Data Science Toolkits (Success

Story): An AI research lab maintains a tool catalog of hundreds of Python functions

(e.g., run_pca , train_xgboost , plot_histogram) for a data analysis agent. The registry

indexes these tools by input_data_type (e.g., 'DataFrame', 'TimeSeries') and

output_metric . Success: The agent can efficiently filter the massive tool space down to

a handful of relevant functions based on the current data context, significantly

accelerating the data exploration process and enabling complex, multi-step analysis

chains that would be impossible with a static tool list. 4. E-commerce Customer

Service (Failure Mode): A customer service agent uses a tool registry where multiple

Byrddynasty | Agentic AI Strategy

34

tools have ambiguous descriptions (e.g., search_products and find_inventory). Failure:

When a user asks, "Do you have the red shirt in stock?", the LLM frequently calls the

wrong tool or calls both, wasting resources and confusing the agent's response. This

highlights the failure of poor semantic indexing and the need for rigorous, non-

overlapping tool descriptions enforced by the registry's metadata standards.

Sub-skill 8.2b: Semantic Search for Tools - Embedding-based tool

discovery, natural language queries for tools, similarity search,

relevance ranking

Conceptual Foundation The foundation of semantic tool discovery rests on the

principles of Vector Space Models (VSM) and the Retrieval-Augmented

Generation (RAG) paradigm, adapted for tool selection. VSM posits that concepts and

meanings can be represented as high-dimensional vectors, or embeddings, where the

distance between vectors (e.g., cosine similarity) correlates with semantic relatedness.

In this context, the natural language query representing the agent's intent and the

descriptive metadata of available tools are all transformed into vectors. The theoretical

underpinning is that if a user asks to "find the current stock price for AAPL," the vector

for this query will be semantically close to the vector for a tool described as "fetches

real-time stock market data." This allows for a robust, intent-driven matching process

that moves beyond brittle keyword matching.

The application of RAG to tool selection is the core architectural pattern. Instead of

retrieving documents, the system retrieves tool definitions. The process involves an

initial retrieval step where a small, relevant subset of tools is selected from a large

library based on the user's prompt. This retrieved subset then augments the LLM's

context window, providing the model with only the necessary information to make a

final, informed decision on which tool to call and with what parameters. This is a direct

solution to the "context window bottleneck" problem, where large tool libraries

would otherwise consume a significant portion of the LLM's limited input capacity,

leading to higher latency, increased cost, and degraded performance due to "lost in the

middle" phenomena.

Furthermore, this approach embodies the concept of a Semantic Interface. Traditional

APIs rely on precise, syntactically correct calls and often require prior knowledge of the

function signature. A Semantic Interface, however, allows for interaction using natural

language queries that express intent. The semantic search layer acts as a

Byrddynasty | Agentic AI Strategy

35

sophisticated translator, mapping the fuzzy, high-level intent into the precise, structured

input (the tool's JSON Schema) required by the underlying API. This abstraction layer is

crucial for building truly flexible and scalable agentic systems, as it decouples the

agent's reasoning from the technical specifics of the tool library.

Technical Deep Dive The technical implementation of semantic tool discovery follows

a specialized RAG pipeline, comprising three main stages: Indexing, Retrieval, and

Augmentation.

Indexing Phase: This is a one-time or batch process. For every tool, a concise, high-

quality tool description (the natural language summary of its function) and often the

function signature (name and parameter names) are concatenated and passed to an

Embedding Model (e.g., a Sentence Transformer or a specialized model like text-

embedding-3-large). The resulting high-dimensional vector (e.g., 1536 dimensions) is

stored in a Vector Database (e.g., Pinecone, Weaviate, Qdrant) alongside the original

tool's full JSON Schema definition. The quality of the initial description is paramount, as

it directly determines the vector's semantic accuracy.

Retrieval Phase: When a user prompt arrives, the agent framework first analyzes the

intent. The prompt (or a distilled version of the intent) is also converted into a query

vector using the same embedding model used in the indexing phase. This query vector

is then used to perform a k-Nearest Neighbors (k-NN) search against the vector

database. The database returns the top k tool vectors (e.g., $k=5$) that have the

highest cosine similarity to the query vector. The result is a list of tool metadata,

including the tool name, description, and the full JSON Schema, ranked by relevance

score.

Augmentation Phase: The retrieved tool definitions are then dynamically formatted

and injected into the LLM's context window, typically as part of the system prompt or a

dedicated tools array. The LLM then performs its final reasoning step, selecting from

this small, highly relevant set of tools. This process is often managed by a specialized

Tool Orchestrator component within the agent framework. For instance, a tool

definition might look like this before injection:

{
 "type": "function",
 "function": {
 "name": "get_stock_price",
 "description": "Retrieves the current market price for a given stock ticker.",

Byrddynasty | Agentic AI Strategy

36

 "parameters": {
 "type": "object",
 "properties": {
 "ticker": {"type": "string", "description": "The stock ticker symbol (e.g., AAPL)."}
 },
 "required": ["ticker"]
 }
 }
}

The entire process ensures that the LLM is not burdened with irrelevant information,

leading to faster, more accurate tool calls.

Framework and Standards Evidence The concept of semantic tool discovery is

explicitly or implicitly supported across major agent frameworks and standards,

demonstrating its necessity for large-scale deployment.

Anthropic Tool Use (Explicit): Anthropic provides the most explicit architectural

pattern with its Tool Search Tool. This is a meta-tool that Claude can call when it

determines a tool is needed but is not in its immediate context. The tool is defined with

a defer_loading: true flag, indicating that its full definition should be indexed and

retrieved on-demand. Anthropic offers both BM25 (keyword-based) and custom

(embedding-based) search tools, highlighting the need for a robust retrieval mechanism

to manage large tool libraries.

OpenAI Function Calling (Implicit): While OpenAI's API does not expose an explicit

"Tool Search Tool," the underlying mechanism for tool selection in models like GPT-4 is

highly sophisticated and likely employs a form of semantic matching. The primary

standard used is JSON Schema for defining the tool's input parameters. The quality of

the description field in the JSON Schema is critical, as this is the text the model uses

for semantic matching against the user's intent.

Google Function Calling (Gemini/Vertex AI): Google's approach, particularly with

the Gemini API and the Model Context Protocol (MCP), also relies on well-defined

tool schemas. The Gemini SDK simplifies the process, often abstracting away the need

for explicit semantic search for smaller toolsets. However, for large-scale applications,

the principle remains: the tool's description and schema are the semantic anchors used

by the model to decide relevance.

Byrddynasty | Agentic AI Strategy

37

OpenAPI and JSON Schema (Definition Standard): OpenAPI (Swagger) and its

underlying component, JSON Schema, have become the de facto standards for

defining LLM tools. An OpenAPI specification for an API endpoint can be automatically

converted into the JSON Schema format required by LLMs. This standardization is vital

because it provides the structured, machine-readable metadata (the tool's name,

description, and parameter structure) that is then used to generate the high-quality

embeddings for the semantic search index.

Agent Skills Standard (Conceptual): The emerging concept of "Agent Skills" often

formalizes the idea of a tool library as a searchable catalog. A Skill is essentially a high-

level, composable tool. Standards in this space are moving towards requiring rich,

multi-layered metadata (e.g., pre-conditions, post-conditions, success metrics) in

addition to simple descriptions, all of which can be indexed as part of a more

sophisticated semantic search and retrieval process.

Practical Implementation Tool engineers face a critical Usability-Flexibility

Tradeoff when implementing semantic tool discovery. The key decision is how to

balance the need to save context tokens (flexibility/scalability) against the added

latency and complexity of the retrieval step (usability/speed).

Decision Point Description Tradeoff Analysis Best Practice

Tool Indexing

Content

What to embed:

just the

description, or

the description +

function name +

parameter

names?

Flexibility vs.

Precision: More

content increases

vector size and

indexing cost but

improves retrieval

precision for specific

function names.

Embed a concatenation of

the tool description,

function name, and a

summary of required

parameters.

Search

Strategy

Pure vector

search (cosine

similarity) vs.

Hybrid search

(vector + BM25/

keyword).

Recall vs.

Relevance: Pure

vector search is great

for conceptual

matching; hybrid

search ensures high

recall for exact

Implement Hybrid

Search and use a

Reciprocal Rank Fusion

(RRF) algorithm to merge

the results, maximizing

both semantic relevance

and keyword accuracy.

Byrddynasty | Agentic AI Strategy

38

Decision Point Description Tradeoff Analysis Best Practice

keywords (e.g., "Jira"

or "GitHub").

Retrieval

Threshold

How many tools

(k) to retrieve,

or what similarity

score threshold

to use.

Context Saving vs.

Accuracy: A low k

saves context but risks

missing the correct

tool; a high k

increases accuracy but

defeats the purpose of

the search.

Start with $k=5$ and

dynamically adjust based

on the LLM's success rate.

Use a dynamic

threshold based on the

gap between the top-

ranked tool and the

second-ranked tool.

Tool

Categorization

Should tools be

grouped by

domain (e.g.,

Finance , HR ,

DevOps)?

Simplicity vs.

Scalability:

Categorization

simplifies the index but

adds a manual

maintenance burden.

Use Hierarchical

Indexing where a top-

level vector represents

the category, and lower-

level vectors represent

individual tools. The

agent first retrieves the

relevant category, then

searches within that

smaller index.

Common Pitfalls * Poor Tool Descriptions (Garbage In, Garbage Out): If the

natural language description of a tool is vague, ambiguous, or uses jargon not present

in the user's query, the embedding will be inaccurate, leading to low relevance scores

and the wrong tool being retrieved. * Mitigation: Enforce a strict style guide for tool

descriptions, requiring clear verbs, explicit side effects, and concrete examples. Use an

LLM to generate and validate descriptions for semantic clarity. * Low-Quality

Embedding Model: Using a general-purpose or low-dimensional embedding model can

fail to capture the subtle semantic differences between tools (e.g., a get_user_info tool

for Slack vs. one for Jira). * Mitigation: Use state-of-the-art, high-dimensional

embedding models (e.g., those optimized for code or technical text). Consider fine-

tuning the embedding model on tool descriptions and user queries. * The "Tool Search

Tool" Itself Fails: If the agent fails to recognize the need to call the search tool, or if

the search tool's own definition is too large or poorly described, the entire process

breaks down. * Mitigation: Ensure the meta-tool's definition is extremely concise and is

Byrddynasty | Agentic AI Strategy

39

always loaded into the context. Use a simple, robust search mechanism (like BM25) as a

fallback within the search tool. * Context Window Thrashing: If the agent retrieves a

tool, calls it, and then the next turn requires a different tool that was not retrieved, the

system must re-run the search, leading to unnecessary latency and token usage. *

Mitigation: Implement a Tool Cache that keeps the last 3-5 successfully used tools in

the context for a few turns, anticipating multi-step workflows. * Ignoring Keyword

Importance: Pure vector search can sometimes miss exact keyword matches (e.g., a

specific product ID or API name) that are critical for tool selection. * Mitigation:

Mandate the use of Hybrid Search (vector + keyword) with a robust result merging

strategy like RRF to ensure both semantic and lexical relevance are considered.

Real-World Use Cases Semantic tool discovery is critical in environments where the

agent's potential action space is vast and constantly changing.

Enterprise Automation Agents: A large corporation's internal agent needs access

to hundreds of APIs (e.g., Salesforce, SAP, custom internal microservices).

Failure Mode: Without semantic search, the agent's context is immediately

saturated, leading to a 90% failure rate in tool selection or an inability to handle

any complex query due to context overflow.

Success Story: Implementing a vector-indexed tool catalog allows the agent to

handle a query like "Find the Q3 sales report in Salesforce and create a Jira ticket

for the engineering team to review it." The agent dynamically retrieves only the

salesforce.getReport and jira.createTicket tools, succeeding with high accuracy

and low latency.

Multi-Domain Customer Service Bots: A single bot handles queries across

product documentation, billing systems, and technical support knowledge bases,

each exposed as a separate tool.

Failure Mode: A query like "How do I reset my password?" might incorrectly

trigger the billing.processPayment tool because both tools contain the keyword

"account" in their descriptions, leading to a security and customer service disaster.

Success Story: Semantic search, combined with high-quality embeddings,

accurately distinguishes the intent vector for "password reset" from "payment

processing," ensuring the agent calls the correct auth.resetPassword tool, even if

the tools share common keywords.

1.

◦

◦

2.

◦

◦

Byrddynasty | Agentic AI Strategy

40

Complex Software Development Agents (IDE Assistants): An agent needs to

access tools for file system operations, Git, package management, testing

frameworks, and deployment pipelines.

Failure Mode: The agent attempts to use a git.commit tool when the user asks to

"save the file," because the descriptions are too similar.

Success Story: The semantic index is built with a focus on the side effects of the

tools. The query "run the unit tests" is semantically distinct from "deploy the

application," allowing the agent to accurately retrieve the testing.runUnitTests

tool without being confused by the dozens of other DevOps tools.

Sub-skill 8.2c: Tool Composition and Chaining - Composable tool

interfaces, multi-step workflows, tool dependencies, orchestration

patterns

Conceptual Foundation Tool composition and chaining for AI agents are

fundamentally rooted in established software engineering principles, primarily Service-

Oriented Architecture (SOA) and Microservices. In this context, each tool is treated

as a specialized service with a well-defined interface (the tool schema). The core

concept is composability, which dictates that complex tasks should be achieved by

combining smaller, independent, and reusable components. This aligns with the principle

of Separation of Concerns, where each tool encapsulates a single, distinct capability.

The theoretical foundation is further supported by Process Algebra and Workflow

Modeling, which provide formalisms for defining sequences, parallelism, and

conditional branching in multi-step workflows. The agent, acting as the orchestrator,

must interpret the user's high-level goal and decompose it into a Directed Acyclic

Graph (DAG) of tool calls, where the output of one tool serves as the input for the

next, establishing critical tool dependencies. The quality of the tool's semantic

interface—its name and description—is paramount, as it enables the LLM to perform

effective semantic routing and planning.

The concept of Orchestration vs. Choreography is central to tool chaining.

Orchestration, typically managed by a central LLM or a dedicated supervisor agent,

involves explicit control over the sequence and state transitions of the workflow. This is

often implemented using State Machines or workflow engines (like LangGraph or AWS

Step Functions) to ensure deterministic execution and error handling. Choreography, on

conversely, relies on tools or agents reacting to events or messages without a central

3.

◦

◦

Byrddynasty | Agentic AI Strategy

41

coordinator, leading to more flexible but potentially harder-to-debug systems. For most

agentic workflows, a hybrid approach is often preferred, where a central LLM

orchestrates the high-level plan, and specialized sub-agents or tools manage their

internal, localized choreography. This structure ensures both control and adaptability.

Finally, the notion of Semantic Interoperability is crucial. This refers to the ability of

the agent to understand and correctly map the output data structure of one tool to the

required input data structure of another, even if the tools were developed

independently. This is achieved through rigorous adherence to standards like JSON

Schema for tool definitions and a shared understanding of domain-specific terminology,

often facilitated by a Semantic Layer that provides canonical definitions for entities

and metrics. Without semantic interoperability, tool chaining breaks down into a series

of manual data transformations, defeating the purpose of autonomous agent execution.

Technical Deep Dive The technical foundation of tool composition rests on the Tool

Call Protocol. This protocol defines the standardized message format used by the LLM

to request a tool execution and the corresponding format for the tool's execution result.

A typical tool call involves the LLM generating a structured object (often JSON)

containing the tool name and a dictionary of arguments, which must strictly conform to

the tool's JSON Schema definition. For chaining, the LLM's subsequent reasoning step

receives the tool's output as a new message in the conversation history. The LLM must

then parse this output and decide the next action: another tool call, a final answer, or

an error state.

Tool Dependency Management is implemented through the workflow's state

representation. In a complex workflow, a tool may require the output of two or more

preceding tools. This is managed by the orchestrator, which tracks the completion status

and output of all executed tools. The orchestrator uses the Directed Acyclic Graph

(DAG) structure to determine which tools are ready to run (i.e., all their dependencies

are met). For example, a generate_report tool might depend on fetch_data and

analyze_data . The orchestrator ensures analyze_data only runs after fetch_data has

successfully completed and its output is available. This prevents runtime errors and

ensures the integrity of the multi-step process.

Schema Design for Composability is critical. Tool schemas should be designed with

minimal, atomic inputs and outputs. For instance, instead of a single tool

process_financial_data(csv_file: str) , it is better to have upload_file(data: str) ->

file_id: str and analyze_financial_data(file_id: str) -> analysis_result: json . This

Byrddynasty | Agentic AI Strategy

42

allows the file_id to become a canonical, reusable token that can be passed between

various tools (e.g., visualize_data(file_id) or share_file(file_id)), significantly

enhancing composability and reducing the LLM's need to handle large, raw data

payloads.

Orchestration Patterns are implemented using specialized frameworks. The

Sequential Chain is the simplest, where tools are called one after the other. The Fan-

Out/Fan-In pattern is used for parallelism, where the orchestrator calls multiple

independent tools concurrently and waits for all results before proceeding. The

Conditional Branching pattern uses the LLM's reasoning over a tool's output to select

the next path. For long-running, transactional workflows, the Saga Pattern is

employed, where a sequence of local transactions (tool calls) is coordinated, and a

compensating transaction (a rollback tool call) is defined for each step to ensure

atomicity and consistency in case of failure.

Framework and Standards Evidence OpenAI Function Calling and Anthropic

Tool Use both rely on the LLM generating a structured JSON object that adheres to a

provided JSON Schema definition. The key evidence for chaining is the multi-turn

conversation structure. The LLM generates a tool_call message, the system executes

the tool and returns a tool_output message, and the LLM uses this output to generate

the next tool_call or the final response. This iterative process is the fundamental

mechanism for chaining.

Google Function Calling (e.g., Gemini API) similarly uses a structured FunctionCall

object. A concrete example of composition is a workflow where the agent first calls a

search_web tool to find a URL, then calls a read_webpage tool using the URL from the first

tool's output, and finally calls a summarize_text tool with the content from the second

tool. The common thread is the LLM's ability to maintain the contextual state across

these distinct tool calls.

OpenAPI (Swagger) and JSON Schema are the foundational standards. OpenAPI is

often used to define the entire set of available tools (the tool library), providing a

machine-readable contract for the agent system. JSON Schema is used to define the

precise structure of the input parameters and expected output of each tool. For

composition, the type and format fields in the JSON Schema are crucial for ensuring

data compatibility between chained tools.

Byrddynasty | Agentic AI Strategy

43

The Agent Skills Standard (a conceptual standard) emphasizes the definition of

preconditions and postconditions for each skill/tool. For composition, the

orchestrator checks if the postconditions of tool A satisfy the preconditions of tool B

before chaining them. For example, Tool A's postcondition might be "A file named

'report.csv' exists in the working directory," which satisfies Tool B's precondition

"Requires a file named 'report.csv' as input." This formalizes tool dependencies and

enables more robust, verifiable planning.

Practical Implementation Tool engineers face a critical Usability-Flexibility

Tradeoff. Highly specialized, complex tools (high flexibility) are harder for the LLM to

use correctly (low usability). Conversely, overly simple, atomic tools (high usability)

require longer, more complex chains (low flexibility). The best practice is to design tools

that are semantically atomic—each tool performs one logical, high-value operation—

but are technically composite in their implementation (e.g., a single send_email tool

that internally handles authentication, templating, and API calls).

Key Design Decisions include: 1. Granularity: Should the tool be fine-grained (e.g.,

add_item_to_cart) or coarse-grained (e.g., checkout_process)? Decision Framework:

Use fine-grained tools when the steps need to be interleaved with LLM reasoning or

other tools; use coarse-grained tools for deterministic, internal sub-processes. 2. State

Management: Should the tool be stateless (preferred) or stateful? Decision

Framework: If state is required (e.g., a database connection), manage it externally in

the orchestrator and pass a session token or ID to the tool, maintaining the tool's

stateless interface. 3. I/O Format: Always use structured data (JSON, XML) for inputs

and outputs. Best Practice: Define canonical data structures for common domain

objects (e.g., Order , Customer) and enforce them across all tool schemas to ensure

seamless chaining.

Common Pitfalls * Semantic Ambiguity in Tool Descriptions: The LLM

misinterprets the tool's purpose, leading to incorrect selection or parameter usage.

Mitigation: Use clear, action-oriented verbs in the tool name and provide a detailed,

example-rich description that explicitly states the tool's side effects and preconditions. *

Unstructured or Overly Verbose Tool Output: The tool returns a large block of

unstructured text or JSON that is too complex, causing the LLM to fail at parsing or

exceeding the context window. Mitigation: Enforce strict JSON output schemas for all

tools. Use output filtering or summarization within the tool wrapper to return only the

minimal, necessary data for the next step. * Circular Dependencies or Infinite

Byrddynasty | Agentic AI Strategy

44

Loops: The LLM enters a loop where Tool A calls Tool B, which calls Tool A, or a tool

fails and the LLM retries it indefinitely. Mitigation: Implement a max-depth counter

in the orchestrator to limit the number of chained calls. For failure handling, use the

Saga pattern with compensating transactions and exponential backoff for retries. *

Lack of Canonical Data Models: Different tools use different field names or formats

for the same entity (e.g., cust_id vs customer_identifier). Mitigation: Establish a

Semantic Layer or a shared data dictionary to enforce canonical data models across all

tool schemas, ensuring seamless data flow between chained components. * Hidden

Side Effects: The tool performs an action (e.g., sending an email, deleting a file) that

is not clearly documented in the schema description. Mitigation: Explicitly state all side

effects in the tool description, often using a dedicated "WARNING" or "SIDE EFFECTS"

section, to allow the LLM to reason about the ethical and practical implications of the

call.

Real-World Use Cases 1. E-commerce Order Fulfillment: A user asks to "Buy the

latest iPhone and track the shipping." This requires a chain: search_product ->

add_to_cart -> process_payment -> generate_tracking_link . Failure Mode: If

process_payment fails, the agent blindly retries the payment indefinitely, leading to

multiple charges or a stuck order. Success Story: A well-engineered chain uses the

Saga pattern to ensure atomicity, logging the state at each step and automatically

executing a compensating transaction (empty_cart) upon payment failure, ensuring a

clean rollback.

2. Data Analysis and Visualization: A user asks to "Analyze Q3 sales data and create

a chart showing regional performance." Chain: fetch_data(Q3) -> clean_data ->

run_statistical_model -> generate_chart . Failure Mode: Poorly designed tools might

return raw CSV text, causing the LLM to hallucinate data cleaning steps or fail to parse

the statistical model's output. Success Story: Tools are designed to pass a canonical

DataFrame_ID token between them, and the run_statistical_model tool returns a

structured JSON object of key metrics, which the generate_chart tool can consume

directly, ensuring data integrity and seamless flow.

3. Automated Incident Response: A user asks to "Investigate the high latency alert

on the API gateway." Chain: check_monitoring_dashboard -> query_logs(timestamp) ->

run_diagnostic_script -> open_jira_ticket . Failure Mode: The query_logs tool returns

an error, and the agent blindly proceeds to run the diagnostic script, which depends on

the logs, causing further issues. Success Story: The chain includes conditional

Byrddynasty | Agentic AI Strategy

45

branching: if query_logs fails, the agent calls a notify_on_call_engineer tool instead of

proceeding, demonstrating robust error handling and composition based on tool

dependency satisfaction.

Sub-Skill 8.3: Tool UX Design for Agents

Sub-skill 8.3a: Writing Clear Tool Descriptions - Unambiguous

documentation, when-to-use guidance, input/output semantics,

agent-oriented writing

Conceptual Foundation The foundation of writing clear tool descriptions for agents

lies at the intersection of Software Engineering, API Design, and Formal

Semantics. From a software engineering perspective, a tool description is analogous to

an Interface Definition Language (IDL) or a contract, defining the function's signature,

preconditions, and postconditions. This contract must be unambiguous, ensuring that

the agent's reasoning engine (the LLM) can correctly parse the intent and the required

parameters, a concept rooted in Design by Contract (DbC). The tool's description

serves as the primary documentation for the agent, making principles of clear, concise

technical writing paramount.

API design principles, particularly those emphasizing discoverability and usability,

are directly applicable. A well-designed REST API uses clear resource names and

predictable parameter structures; similarly, a well-described agent tool must have a

name and description that immediately convey its purpose and scope. The description

acts as the semantic layer over the underlying imperative code, translating human-

readable intent into a machine-interpretable format. This semantic clarity is crucial

because the LLM does not execute the code; it only generates the call to the code.

Therefore, the description must contain all the necessary semantic cues for the LLM to

make an informed decision on when to call the tool and how to populate its arguments.

The theoretical underpinning for agent-oriented writing is found in Formal Semantics

and Knowledge Representation. The tool description, often expressed in a structured

format like JSON Schema, is a form of declarative knowledge. The LLM's decision-

making process is a form of abductive reasoning, where it infers the best tool call

(the hypothesis) that satisfies the user's request (the observation), given the available

Byrddynasty | Agentic AI Strategy

46

tools (the knowledge base). The quality of the tool description directly impacts the

fidelity of this inference. For example, the \"when-to-use guidance\" is a critical piece of

metadata that guides the agent's tool selection policy, effectively serving as a high-

level semantic constraint that reduces the search space of possible actions and prevents

tool hallucination.

Technical Deep Dive The technical core of clear tool description is the use of a formal

schema language, predominantly JSON Schema, to define the tool's interface. This

schema specifies the function name, a high-level description, and a detailed definition of

the input parameters. For example, a tool to retrieve stock prices might be defined with

a type: object for parameters, and properties like ticker (string, required, with a

specific description like 'The stock ticker symbol, e.g., AAPL') and start_date (string,

optional, format 'YYYY-MM-DD'). The quality of the description field within the schema

is paramount, as it is the primary input for the LLM's reasoning.

Implementation protocols typically involve a three-step loop: the LLM receives the user

prompt and the tool definitions; it then outputs a structured response (e.g., a JSON

object) indicating the tool to be called and the arguments; finally, the agent runtime

executes the tool and feeds the result back to the LLM. The clarity of the tool

description directly influences the first step. A key API pattern is the inclusion of

semantic constraints within the description, such as specifying units, valid ranges, or

required data formats, which helps the LLM avoid generating invalid calls.

For example, a robust JSON Schema for a book_flight tool would not only define

origin and destination as strings but would also include a detailed description for the

function itself: 'Use this tool ONLY when the user explicitly asks to search for or book a

flight. Do not use for general travel advice.' Furthermore, parameter descriptions should

be precise: 'The three-letter IATA code for the departure airport.' This level of detail acts

as a powerful constraint on the LLM's output, minimizing parameter hallucination and

misuse.

Beyond input, the description must implicitly or explicitly define the output semantics.

While the output itself is often free-form text or a structured data payload, the LLM

needs to know what to expect to correctly interpret the result. Best practice dictates

that the tool's description should include a sentence about the expected return value,

e.g., 'Returns a JSON array of available flights, or an error message if no flights are

found.' This closes the loop and aids the LLM in the subsequent reasoning step.

Byrddynasty | Agentic AI Strategy

47

Framework and Standards Evidence The adoption of structured tool descriptions is a

cross-platform standard, though the specific syntax varies:

OpenAI Function Calling (JSON Schema): OpenAI pioneered the widespread use

of JSON Schema for tool definition. The model is presented with a list of functions,

each defined by a name , a description , and a parameters object adhering to the

JSON Schema specification. The description field is critical, as it is the primary

prompt for the model's decision-making process. The model's output is a JSON

object conforming to the tool_calls structure, which the developer then executes.

Anthropic Tool Use (XML): Anthropic's approach, often utilizing the Model Context

Protocol (MCP), frequently leverages XML tags to define tools within the prompt

context. Tools are wrapped in <tool_description> tags, and the agent is instructed to

output its tool call within <tool_use> tags. While functionally similar to JSON

Schema, the XML structure is often seen as more human-readable and integrates

naturally with the prompt's conversational flow, emphasizing the importance of clear,

agent-oriented writing within the description tags.

Google Function Calling (OpenAPI/JSON Schema): Google's Gemini API also

relies on JSON Schema, often aligning closely with the OpenAPI Specification (OAS)

for defining functions. This alignment allows developers to reuse existing API

documentation, promoting a systematic approach. The tool definition includes the

function's name and a parameters object, where the description fields guide the

model.

OpenAPI Specification (OAS): While not an LLM-specific framework, OAS is the

foundational standard for defining REST APIs. Its use of JSON Schema for request/

response bodies and its comprehensive metadata fields (like summary and

description) make it a natural fit for systematic tool engineering. Many LLM

frameworks internally convert OAS definitions into the format required for their

models.

Agent Skills Standard: Emerging standards often build upon these foundations,

advocating for rich metadata beyond simple descriptions, such as usage_examples ,

failure_modes , and explicit preconditions and postconditions , further formalizing the

semantic contract for agent consumption.

Practical Implementation Key design decisions revolve around the granularity of

the tool and the verbosity of the description. A tool engineer must decide between a

1.

2.

3.

4.

5.

Byrddynasty | Agentic AI Strategy

48

few highly flexible, complex tools (e.g., a single database_query tool) or many narrowly

focused, simple tools (e.g., get_user_profile , get_order_history). Narrow tools are

easier for the LLM to select correctly but increase the total number of tools, potentially

hitting context limits. Broad tools require more complex, detailed descriptions to guide

the LLM's parameter selection.

Usability-Flexibility Tradeoffs:

Design Choice Usability (Agent)
Flexibility

(Developer)
Best Practice

Simple, Narrow

Tools

High (Clear intent) Low (More tools to

manage)

Use for common, atomic

actions.

Complex,

Broad Tools

Low (Requires

more reasoning)

High (Fewer tools,

reusable)

Use for domain-specific,

multi-step operations.

Strict JSON

Schema

High (Deterministic

output)

Low (Less forgiving) Enforce for critical data,

like financial

transactions.

Verbose

Descriptions

High (Clearer

intent)

Low (Increased

context window

usage)

Keep descriptions

concise but semantically

rich.

Best Practices: 1. Agent-Oriented Description: Start the function description with a

clear \"when-to-use\" clause (e.g., \"Use this tool ONLY to search for current weather

conditions.\"). 2. Parameter Precision: Use the description field for each parameter

to specify units, constraints, and format (e.g., \"The temperature unit, must be 'celsius'

or 'fahrenheit'.\"). 3. Error Semantics: Explicitly mention the expected error return

format in the main tool description to help the LLM interpret failures correctly.

Common Pitfalls * Ambiguous Function Descriptions: Pitfall: A description like 'A

tool for data.' Mitigation: Specify the exact action and scope: 'Use this tool to retrieve

real-time stock market data for US-listed companies.' * Parameter Hallucination:

Pitfall: The LLM invents parameters not defined in the schema. Mitigation: Ensure all

required parameters are clearly marked as required: true and provide detailed,

constraining descriptions for all optional parameters. * Overly Broad Tool Scope:

Pitfall: A single tool attempts to perform too many unrelated actions (e.g., utility_tool

for both file I/O and network requests). Mitigation: Follow the Single Responsibility

Byrddynasty | Agentic AI Strategy

49

Principle (SRP); break down tools into atomic, focused capabilities. * Missing

Semantic Constraints: Pitfall: Defining a parameter as a string without specifying

the expected format (e.g., date format, currency code). Mitigation: Use regex patterns

(if supported by the framework) or explicitly state the required format in the parameter

description (e.g., 'Date must be in YYYY-MM-DD format.'). * Ignoring Output

Semantics: Pitfall: The tool returns a complex JSON object, but the LLM doesn't know

how to interpret the fields. Mitigation: Include a brief summary of the tool's return value

in the main description (e.g., 'Returns a JSON object with keys: 'status', 'data', and

'error_message'.'). * Using Internal Jargon: Pitfall: Tool names or descriptions use

internal project terms or acronyms unknown to the agent's general knowledge base.

Mitigation: Use universally understandable, action-oriented names (e.g.,

get_user_location instead of fetch_geo_id).

Real-World Use Cases 1. Financial Trading Bot (Success Story): A well-

engineered tool description for execute_trade(symbol, quantity, order_type) explicitly

defines order_type as an enum ('market' , 'limit') and specifies that quantity must

be a positive integer. Success: The agent reliably executes trades without generating

invalid order types or negative quantities, ensuring system stability and preventing

financial loss.

Customer Support Agent (Failure Mode): A poorly described get_customer_info

tool lacks constraints and a clear 'when-to-use' guide. Failure: The agent calls the

tool for every user query, even simple greetings, leading to excessive API calls, high

latency, and potential privacy violations by unnecessarily accessing sensitive data.

Code Generation Agent (Success Story): A tool for generating code snippets,

generate_code(language, requirements) , uses a detailed description for requirements

that specifies the need for a list of desired features and constraints. Success: The

LLM consistently generates highly relevant and constrained code, as the tool

description effectively guides the LLM's output generation process.

E-commerce Inventory Management (Failure Mode): A tool named update_item

has an ambiguous description. Failure: The agent confuses the item_id parameter

with the sku parameter, leading to incorrect inventory updates and stock

discrepancies, demonstrating a critical failure in input/output semantics.

1.

2.

3.

Byrddynasty | Agentic AI Strategy

50

Sub-skill 8.3b: Providing Tool Examples - Example Invocations,

Edge Cases, Common Patterns, Learning from Examples

Conceptual Foundation The practice of providing tool examples to a Large Language

Model (LLM) agent is fundamentally rooted in the concept of In-Context Learning

(ICL), a powerful emergent capability of transformer models. ICL allows the model to

learn a new task or modify its behavior based on a few input-output demonstrations

provided directly within the prompt, without requiring any weight updates or fine-tuning

[1]. In the context of tool use, these examples—often referred to as few-shot

examples—serve as a form of meta-training data, teaching the model the specific

semantic mapping between a user's natural language intent and the formal,

structured syntax of a tool invocation (e.g., a JSON function call).

From a software engineering and API design perspective, this process is an exercise in

semantic interface design. The tool's formal definition (via JSON Schema) provides

the syntactic contract, defining the function name, parameters, and data types.

However, the few-shot examples provide the semantic contract, illustrating the

pragmatics of the tool: when it should be called, how ambiguous user language should

be resolved into precise arguments, and what constitutes a successful invocation. This

dual-layer contract—formal syntax via schema and behavioral semantics via examples—

is crucial for bridging the gap between the LLM's fluid natural language understanding

and the deterministic requirements of external APIs. The theoretical foundation here

aligns with the principles of Design by Contract (DbC), where the LLM is guided by

both the formal specification and concrete behavioral demonstrations.

Furthermore, the effectiveness of tool examples draws upon principles from Case-

Based Reasoning (CBR), a paradigm in artificial intelligence where new problems are

solved by adapting solutions that were used to solve similar past problems (the "cases"

or examples). When an LLM processes a new user query, it essentially performs a

retrieval and adaptation task: it retrieves the most relevant few-shot example from its

context and adapts the corresponding tool invocation to the specifics of the new query.

This mechanism is particularly vital for handling edge cases and corner cases that are

difficult to capture solely through a natural language description in the tool's

documentation. By explicitly demonstrating how to handle an ambiguous request or a

complex argument structure, the examples effectively "prime" the model's internal

reasoning process, leading to more accurate and reliable tool-use decisions.

Byrddynasty | Agentic AI Strategy

51

The ultimate goal of providing tool examples is to maximize the semantic usability of

the tool for the agent. This is achieved by reducing the cognitive load on the LLM's

reasoning component. Instead of relying purely on zero-shot reasoning from the tool's

description, the agent can leverage the demonstrated patterns, making the decision

process faster, more efficient, and less prone to hallucination or misinterpretation. The

quality and relevance of these examples directly correlate with the agent's performance,

making the curation of few-shot examples a critical step in the agent engineering

lifecycle.

Technical Deep Dive The technical mechanism for providing tool examples is a

sophisticated application of in-context learning within the structured context of function

calling protocols. The foundation is the JSON Schema definition of the tool, which is

passed to the LLM as a system-level instruction. For example, a simple tool might be

defined as:

{
 "name": "get_current_weather",
 "description": "Get the current weather in a given location",
 "parameters": {
 "type": "object",
 "properties": {
 "location": {"type": "string", "description": "The city and state, e.g., San Francisco, CA"},
 "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]}
 },
 "required": ["location"]
 }
}

Few-shot examples are then injected into the conversation history to demonstrate the

mapping function from user intent to this schema. The model is trained to recognize

the pattern of a user request followed by a structured response that adheres to the

schema. A typical few-shot example sequence in the context history would look like

this:

User Message (Input): "What's the weather like in Boston right now?"

Assistant Message (Invocation): The model generates a structured object, often

a JSON or XML block, that represents the tool call: {"tool_name":

"get_current_weather", "args": {"location": "Boston, MA", "unit": "fahrenheit"}} .

1.

2.

Byrddynasty | Agentic AI Strategy

52

Tool Message (Observation): The system executes the tool and returns the result,

which is injected back into the context: {"content": "The weather in Boston is 15°C and

sunny."} .

The few-shot examples are critical because they teach the model how to handle

semantic ambiguity and argument resolution. For instance, a zero-shot model

might struggle to infer the unit parameter if the user doesn't specify it. A few-shot

example that shows a query like "What's the weather in London?" resulting in

unit="celsius" establishes a default behavior or a regional preference that the model

learns implicitly. This is a form of in-context fine-tuning that guides the model's

internal token generation process to produce the precise, syntactically correct JSON/

XML output required for tool execution. The quality of the few-shot examples directly

impacts the model's precision (avoiding false positives) and recall (not missing

opportunities to call the tool). The most robust implementations use a dedicated system

role to define the tool and then interleave few-shot examples within the user /

assistant / tool conversation history to provide the clearest possible demonstration of

the required behavior. This technical pattern ensures the LLM learns the entire loop:

Intent \rightarrow Invocation \rightarrow Observation \rightarrow

Response.

Framework and Standards Evidence All major LLM frameworks and standards

incorporate mechanisms for few-shot tool examples, though the implementation details

vary based on the underlying protocol. The core principle remains the same: inject

structured examples into the context to guide the model's function-calling behavior.

Framework/

Standard
Mechanism for Tool Examples Technical Implementation Detail

OpenAI

Function

Calling

Few-shot examples are typically

injected as part of the

conversation history using the

assistant and function roles

[2].

A successful tool-use example is

structured as a sequence: user

message (the query), assistant

message with function_call object

(the invocation), and a function

message with the tool's content

(the result). This explicitly

demonstrates the full turn-taking

sequence.

3.

Byrddynasty | Agentic AI Strategy

53

Framework/

Standard
Mechanism for Tool Examples Technical Implementation Detail

Anthropic Tool

Use (Claude)

Examples are often provided in

the system prompt using XML

tags (<example>) or similar

structured delimiters to define

the input and the expected tool-

use output [3].

Anthropic's approach emphasizes

clear separation of instruction and

example within the system prompt.

The examples show the model's

internal reasoning process (e.g.,

using ReAct-style thinking) leading

up to the <tool_use> tag, which

contains the structured call.

Google

Function

Calling

(Gemini)

Few-shot examples are

integrated into the history of

the conversation, similar to

OpenAI, using specific roles to

denote the user query and the

model's function-calling response

[4].

The model is provided with a tools

object (JSON Schema) and the

conversation history. Examples

demonstrate the model's ability to

generate the structured

functionCall object, ensuring the

model learns the precise argument

mapping.

OpenAPI/

JSON Schema

While not a direct mechanism for

few-shot invocation examples,

OpenAPI specifications can be

augmented with examples fields

within the parameter definitions

[5].

The examples field in a JSON

Schema parameter (e.g., {"type":

"string", "description": "City

name", "examples": ["London",

"Tokyo"]}) provides the LLM with

valid, common input values, which

acts as a weak form of few-shot

guidance for argument construction.

Agent Skills

Standard

(Conceptual)

The standard advocates for a

dedicated demonstrations field

within the skill definition, which

explicitly links a natural language

task to a structured skill

invocation, often using a

standardized format like YAML or

JSON for easy parsing and

retrieval.

This approach formalizes the few-

shot concept, making the examples

a first-class citizen of the tool

definition, enabling dynamic retrieval

and validation across different agent

platforms.

Byrddynasty | Agentic AI Strategy

54

The key takeaway is that all frameworks rely on the LLM's ICL ability, but they differ in

where the examples are placed (system prompt vs. conversation history) and how they

are formatted (JSON objects vs. XML/Markdown structures). The most effective method

is to provide the full turn-taking sequence, including the user's intent and the model's

resulting structured output, to train the model on the entire decision boundary.

Practical Implementation Tool engineers face several key design decisions when

implementing few-shot examples, primarily revolving around the trade-off between

usability (making the tool easy for the LLM to use) and flexibility (allowing the tool to

handle a wide range of inputs and complex scenarios).

Decision

Framework

Usability-Flexibility

Tradeoff
Best Practice Guidance

Example

Selection

Strategy

Static (High Usability,

Low Flexibility) vs.

Dynamic (Low

Usability, High

Flexibility)

Hybrid Approach: Use a small set of static,

core examples (e.g., 2-3) to establish baseline

behavior, and supplement them with dynamically

retrieved examples (e.g., 2-3) for specific,

complex, or edge-case queries.

Example

Complexity

Simple (High

Usability, Low

Robustness) vs.

Complex (Low

Usability, High

Robustness)

Progressive Complexity: Start with simple,

canonical examples. Gradually introduce

examples demonstrating multi-tool calls,

argument default values, and error-handling

logic. The goal is to teach the model to handle

the full spectrum of the tool's intent space.

Example

Format

Minimal (Token-

efficient) vs. Verbose

(Context-rich)

Context-Rich Format: Include the full turn-

taking sequence (User Query, Model Reasoning/

Thought, Tool Invocation, Tool Observation) to

provide maximum context. While verbose, this

trains the model on the entire ReAct-style loop,

leading to superior performance.

Implementation Best Practices:

Prioritize Edge Cases: The primary value of few-shot examples is not to teach the

common path, but to teach the edge cases where the zero-shot description fails.

Examples should explicitly demonstrate how to handle ambiguous arguments,

1.

Byrddynasty | Agentic AI Strategy

55

required fields, and semantic nuances (e.g., "next week" translating to a specific date

format).

Include Negative Examples: For every tool, include at least one example where

the user query is similar to a tool-use case but should not trigger the tool. This

establishes the decision boundary and significantly reduces false positive tool calls.

Use Real-World Data: Base examples on anonymized logs of actual user

interactions and model failures. The most effective few-shot examples are those that

correct a previously observed failure mode.

Version Control Examples: Treat the few-shot example set as a critical piece of

software configuration. Store them in a version-controlled repository and link them

directly to the tool's schema version to ensure consistency and traceability.

Common Pitfalls Providing tool examples is a powerful technique, but it is fraught with

potential pitfalls that can degrade agent performance.

Context Pollution and Overloading: Injecting too many examples, or examples

that are irrelevant to the current task, consumes valuable context window space and

can confuse the LLM, leading to lower performance and higher latency.

Mitigation: Implement dynamic few-shot selection using vector similarity search

(RAG) to retrieve only the top 3-5 most relevant examples for the current user

query.

Example-Induced Bias (Overfitting): If all examples demonstrate a tool being

called, the model may develop a strong bias to call that tool even when inappropriate

(false positives). If all examples are simple, the model may fail on complex edge

cases.

Mitigation: Ensure a balanced dataset that includes negative examples (user

queries that should not trigger a tool call) and examples that explicitly

demonstrate complex argument structures or error handling.

Syntactic Drift/Inconsistency: Few-shot examples provided in a slightly different

format or syntax than the model's expected output can introduce noise, causing the

model to generate malformed JSON or function calls.

Mitigation: Strictly adhere to the model's required output format (e.g., the exact

JSON structure for function calls) and use automated validation to ensure all

examples are syntactically perfect.

2.

3.

4.

•

◦

•

◦

•

◦

Byrddynasty | Agentic AI Strategy

56

Edge Case Omission: Failing to include examples that cover common edge cases

(e.g., null values, empty lists, ambiguous requests, multi-tool calls) results in brittle

agents that fail in production.

Mitigation: Systematically identify high-risk edge cases during tool design and

create specific few-shot examples for each. Prioritize examples that demonstrate

error recovery or complex logic.

Static Example Maintenance Burden: Hardcoding examples in the system prompt

makes the agent difficult to update and maintain, especially as the toolset evolves or

new failure modes are discovered.

Mitigation: Externalize few-shot examples into a managed dataset or configuration

file, allowing for version control, A/B testing, and easy updates without modifying

the core system prompt logic.

Misalignment of Intent and Invocation: The example's user query might not

clearly map to the tool call, or the tool call might be semantically incorrect for the

query, teaching the model a flawed mapping.

Mitigation: Conduct rigorous human review of all few-shot examples to ensure the

user intent, the model's reasoning (if included), and the final tool invocation are

perfectly aligned and logically sound.

Real-World Use Cases The quality of few-shot tool examples is critical in real-world

agent deployments, determining the success or failure of complex automation tasks.

Financial Data Retrieval Agent:

Tool: get_stock_price(ticker: str, date: optional[str]) .

Failure Mode (Poor Examples): If examples only show simple calls like

get_stock_price(ticker="AAPL") , the agent fails when a user asks, "What was the

price of Apple stock on the day before yesterday?" The model might hallucinate

the date or use an incorrect format.

Success Story (Well-Engineered Examples): Examples explicitly demonstrate

parsing relative time (e.g., "day before yesterday" -> date="2026-01-01") and

handling ambiguous tickers (e.g., "Tesla" -> ticker="TSLA"). This ensures the

agent correctly resolves the semantic intent into the precise API call, leading to

high-fidelity financial reporting.

•

◦

•

◦

•

◦

1.

◦

◦

◦

Byrddynasty | Agentic AI Strategy

57

Customer Support Automation Agent:

Tool: create_support_ticket(priority: enum, subject: str, description: str) .

Failure Mode (Poor Examples): Examples only show high-priority tickets. When a

user says, "My printer is making a funny noise," the agent defaults to high

priority, overloading the support team with non-critical issues.

Success Story (Well-Engineered Examples): Few-shot examples are used to define

the priority mapping. Examples show "printer not working" -> priority="high" ,

but "printer making noise" -> priority="low" . This fine-grained control, taught

through examples, allows the agent to accurately triage and route tickets,

significantly improving operational efficiency.

Code Generation Agent:

Tool: read_file(path: str) and write_file(path: str, content: str) .

Failure Mode (Poor Examples): Examples only show single-tool calls. When asked

to "Read config.json , update the version number, and write it back," the agent

fails to chain the read and write calls correctly, often attempting to write before

reading or using the wrong path.

Success Story (Well-Engineered Examples): Examples demonstrate the multi-

step orchestration pattern (ReAct-style). The few-shot sequence shows the

agent's internal thought process, the first tool call (read_file), the observation

(the file content), the subsequent reasoning, and the final tool call (write_file).

This trains the model on complex task decomposition and sequential execution,

enabling the agent to handle multi-step software development tasks reliably.

Sub-skill 8.3c: Optimizing Semantic Altitude: Balancing Specificity

and Flexibility, Abstraction Levels, Generalization vs Precision

Conceptual Foundation The concept of Semantic Altitude in tool engineering refers

to the level of abstraction at which a tool's capability is presented to the Large

Language Model (LLM) agent. This is fundamentally rooted in classical software

engineering principles, particularly API Design and the management of Abstraction

Layers. A low semantic altitude tool is highly specific and granular (e.g.,

get_user_by_id), offering high precision but low flexibility. A high semantic altitude tool

is generalized and abstract (e.g., manage_user_data), offering high flexibility but risking

low precision and increased cognitive load for the agent. The theoretical foundation

2.

◦

◦

◦

3.

◦

◦

◦

Byrddynasty | Agentic AI Strategy

58

draws from the Principle of Least Astonishment, where the tool's behavior must

predictably align with its description, and Cognitive Load Theory, which suggests that

the agent's reasoning performance degrades as the complexity and number of low-

altitude tools increase.

The core challenge is the Generalization vs. Precision Tradeoff. Generalization,

achieved through higher semantic altitude, allows a single tool to cover a wider range of

user intents, reducing the number of tools the agent must consider. However, this

generalization often requires the agent to infer more complex arguments or choose

from a broader set of optional parameters, which introduces ambiguity and reduces the

precision of the tool call. Conversely, high precision, achieved through low semantic

altitude, ensures the agent's call is exact but necessitates a proliferation of specialized

tools, which can overwhelm the agent's context window and lead to tool selection

errors.

Effective tool engineering seeks an optimal semantic altitude—a "sweet spot" where the

tool is abstract enough to be broadly useful but specific enough to be reliably invoked

by the LLM. This balance is achieved by designing interfaces that hide implementation

complexity while exposing just the right level of semantic detail. For instance, instead of

exposing the underlying database query language, the tool exposes a high-level search

function. This is analogous to the concept of Cohesion and Coupling in module

design: tools should be highly cohesive (focused on a single, clear domain) and loosely

coupled (their invocation should not require deep knowledge of other tools or internal

state). The optimal altitude is a function of the agent's capability and the complexity of

the task domain.

Technical Deep Dive The technical mechanism for optimizing semantic altitude is

primarily the design of the JSON Schema used to define the tool's input parameters.

This schema acts as the formal contract, and the balance between specificity and

flexibility is managed through the strategic use of the required array and parameter

typing. A low-altitude tool maximizes specificity by having a long required array and

strict types (e.g., integer , enum). A high-altitude tool maximizes flexibility by having a

short or empty required array, relying heavily on optional parameters and more

generalized types (e.g., string for a search query).

Consider a generalized tool for content management, manage_content . To balance its

altitude, the schema might look like this:

Byrddynasty | Agentic AI Strategy

59

{
 "name": "manage_content",
 "description": "Creates, updates, or deletes content items.",
 "parameters": {
 "type": "object",
 "properties": {
 "action": {"type": "string", "enum": ["create", "update", "delete"]},
 "content_type": {"type": "string", "description": "e.g., 'blog_post', 'product_page'"},
 "id": {"type": "integer", "description": "Required for update/delete actions"},
 "title": {"type": "string", "description": "Required for create/update actions"},
 "body": {"type": "string", "description": "The main content text"}
 },
 "required": ["action", "content_type"]
 }
}

In this example, the tool is at a medium-high altitude. The action and content_type are

required (specificity), ensuring the agent always provides the fundamental context.

However, id , title , and body are optional (flexibility). The agent must use its

reasoning to determine which optional fields are necessary based on the chosen action

(e.g., id is needed for delete). This design shifts the burden of argument generation

from a rigid requirement to a contextual decision, optimizing the semantic altitude for

agent usability.

Furthermore, the API Pattern employed significantly impacts altitude. The Command

Pattern (e.g., create_user) is inherently low-altitude and specific. The Query Pattern

(e.g., search_data) is often high-altitude, as the query parameter itself is a flexible,

generalized input. Best practice dictates using the Command Pattern for state-changing

operations and the Query Pattern for read-only operations, thus aligning the required

precision (low altitude) with the potential risk of the action. The tool's description is

the final, critical component, serving as the natural language layer that guides the LLM's

semantic understanding of the altitude and scope. A well-written description can

compensate for a complex schema by clearly articulating the tool's generalized purpose.

Framework and Standards Evidence The major LLM frameworks demonstrate the

balancing act of semantic altitude through their tool definition mechanisms, primarily

relying on JSON Schema.

OpenAI Function Calling: OpenAI pioneered the use of JSON Schema for tool

definition. The balance is struck by encouraging developers to use optional

parameters (properties not listed in required). For example, a search_flights tool

1.

Byrddynasty | Agentic AI Strategy

60

might require origin and destination (specificity) but make departure_date ,

max_price , and cabin_class optional (flexibility). The LLM's prompt is implicitly

engineered to use these optional fields only when the user's request explicitly

provides the necessary information, thus dynamically adjusting the tool's specificity

based on context.

Anthropic Tool Use (Tools): Anthropic emphasizes clear, concise descriptions

as a primary lever for semantic altitude. Their guidance often suggests consolidating

multiple related actions into a single tool and using the description to clearly

delineate the tool's boundaries. They also recommend enriching tool responses with

metadata to help the agent reason better, effectively lowering the cognitive load on

the agent by providing more context, which allows the tool's interface to remain at a

slightly higher altitude.

Google Function Calling (Gemini): Google's implementation is structurally similar

to OpenAI's, leveraging JSON Schema. A key example of balancing is the use of

polymorphism via oneOf or anyOf in the schema (though less common in basic

implementations). This allows a single tool, say process_payment , to accept multiple,

distinct input structures (e.g., a credit_card_object OR a paypal_token_object),

providing high flexibility under a single, generalized tool name.

OpenAPI Specification (OAS): OAS, the standard for REST APIs, serves as a

powerful, high-altitude definition for agent tools. An agent can be given access to an

entire OpenAPI document, which defines numerous low-altitude endpoints (e.g., /

users/{id} , /users/search). The agent's challenge is to select and orchestrate these

granular tools. The OAS structure itself provides the necessary abstraction by

grouping related operations under a single API, allowing the agent to reason about

the entire service at a high level before diving into the specific endpoint (low

altitude).

Agent Skills Standard (Conceptual): Emerging standards often focus on defining

a Tool Manifest that includes not just the schema but also semantic tags and

usage examples. These examples act as in-context learning for the LLM, helping it

understand the intent behind the tool at a higher altitude, even if the underlying

schema is highly specific. This meta-data layer is crucial for optimizing the semantic

altitude without altering the underlying technical contract.

Practical Implementation Optimizing semantic altitude requires a structured decision

framework centered on the Usability-Flexibility Tradeoff. The key decision is whether

2.

3.

4.

5.

Byrddynasty | Agentic AI Strategy

61

to create many specific tools (low altitude) or few generalized tools (high

altitude).

Decision Framework:

Optimal Semantic

Altitude

Low Altitude (Specific)
High Altitude

(Generalized)

Tool Count High (e.g., 10+ tools) Low (e.g., 3-5 tools)

Agent Cognitive Load High (Tool Selection) High (Argument Generation)

Precision/Reliability High (Simple, strict arguments) Low (Complex, optional

arguments)

Flexibility/Coverage Low (Narrow use case) High (Broad use case)

Best Practice Use for critical, high-precision

actions (e.g.,

confirm_payment).

Use for exploratory, data-

retrieval actions (e.g.,

search_data).

Best Practices for Implementation:

Use Optional Parameters for Flexibility: Design the tool at a high altitude

(generalized name, broad scope) but use JSON Schema's required array to enforce

only the absolute minimum parameters. All other parameters should be optional,

allowing the agent to specialize the call when needed.

Semantic Cohesion: Ensure that all functionality within a single tool is semantically

related. A tool named manage_calendar should not also handle sending emails. This

maintains a clear boundary for the agent.

Action vs. Data Retrieval: Tools that perform irreversible actions (e.g.,

delete_record) should be at a lower, more specific semantic altitude to maximize

precision and minimize the risk of agent error. Tools for data retrieval (e.g.,

query_database) can be at a higher altitude to maximize flexibility.

Layered Abstraction: Implement a Tool Server layer that acts as a translator. The

LLM calls a high-altitude tool (e.g., find_document(title="report")), and the Tool

Server translates this into a sequence of low-altitude internal API calls (e.g.,

search_index , filter_results , fetch_content). This allows the agent to operate at a

high, usable altitude while maintaining the precision of low-altitude execution.

1.

2.

3.

4.

Byrddynasty | Agentic AI Strategy

62

Common Pitfalls * Pitfall 1: Over-Generalization (Too High Altitude): Creating a

single tool like perform_action(task: str) that accepts a free-form string. Mitigation:

Decompose the tool into specialized, lower-altitude functions (e.g.,

create_calendar_event , send_email) with strict, typed parameters. * Pitfall 2: Over-

Specialization (Too Low Altitude): Exposing dozens of highly granular CRUD

operations (e.g., get_user_by_id , get_user_by_email , get_user_by_username). Mitigation:

Consolidate into a single, flexible tool like search_user(query: str, field: str = 'id')

using optional parameters and a clear description of supported fields. * Pitfall 3:

Ambiguous Descriptions: Using vague language in the tool description that doesn't

clearly define the tool's side effects or scope. Mitigation: Ensure descriptions explicitly

state the tool's purpose, inputs, outputs, and any real-world side effects (e.g., "This tool

sends a non-reversible email to the specified recipient"). * Pitfall 4: Schema Drift:

The tool's actual implementation diverges from its JSON Schema definition. Mitigation:

Implement automated schema generation from the source code (e.g., using Python type

hints and Pydantic) and integrate schema validation into the CI/CD pipeline to ensure

the contract is always honored. * Pitfall 5: Tool Hallucination: The LLM invents

parameters or calls tools for inappropriate tasks. Mitigation: Use strict, typed schemas

with clear enum constraints where possible, and ensure the tool's name and description

are highly distinct and unambiguous. * Pitfall 6: Non-Idempotent Tool Calls: The

agent calls a tool multiple times due to reasoning errors, causing unintended

consequences (e.g., double-booking a flight). Mitigation: Design tools to be

idempotent where possible, or include a unique transaction ID parameter that the tool

server can use to prevent duplicate execution.

Real-World Use Cases The quality of semantic altitude optimization is critical in real-

world agent deployments, particularly in enterprise automation and customer service.

Enterprise Resource Planning (ERP) Agent:

Failure Mode (Low Altitude): An agent is given 50 separate tools for every

granular ERP action: create_invoice , update_invoice_status , get_invoice_by_id ,

get_invoice_by_customer . When a user asks, "Please process the new order for

Acme Corp," the agent struggles to chain the correct 3-4 tools in sequence, often

failing due to tool selection errors or argument mismatch.

Success Story (Optimal Altitude): The tools are consolidated into two high-

altitude tools: process_order(customer_name, items) and

query_financial_records(entity_type, filter_params) . The agent reliably calls

1.

◦

◦

Byrddynasty | Agentic AI Strategy

63

process_order , which internally handles all the low-level steps (inventory check,

invoice creation, status update), leading to high automation success rates.

Customer Service Chatbot (Ticketing System):

Failure Mode (High Altitude): A single tool, handle_request(details: str) , is

used. When a user says, "My password is not working," the LLM generates a

vague details string, and the tool server fails to reliably parse the intent into a

specific action (e.g., reset_password vs. check_account_status). This leads to non-

deterministic behavior and poor customer experience.

Success Story (Optimal Altitude): Tools are defined at a medium altitude:

reset_user_password(user_id) , check_system_status(service_name) , and

create_support_ticket(summary, severity) . The agent's reasoning is forced to be

precise enough to select the correct tool and extract the required user_id ,

balancing flexibility with the necessary precision for a critical security action.

Financial Trading Agent:

Failure Mode (Low Altitude): The agent is exposed to raw market data APIs:

get_stock_price(symbol) , get_volume(symbol) , get_moving_average(symbol) . A

request to "Find stocks with a 50-day moving average crossover" requires the

agent to plan a complex, multi-step chain of calls, often exceeding the token limit

or failing mid-execution.

Success Story (Optimal Altitude): A single, high-altitude tool,

execute_technical_analysis(strategy_name, parameters) , is exposed. The agent calls

this tool with high-level parameters, and the tool server executes the complex,

low-level data fetching and calculation logic, ensuring the agent focuses on

strategic decision-making rather than data plumbing.

Sub-skill 8.3: Dynamic Tool Generation and Agent Self-Modification

Conceptual Foundation The foundation of dynamic tool generation and agent self-

modification is rooted in the principles of meta-programming and self-referential

systems. Meta-programming, defined as "programming to program," is the ability of a

system to treat its own code or structure as data that can be read, analyzed, and

manipulated at runtime. In the context of LLM agents, this means the agent is not

merely executing pre-defined functions but is capable of generating the definition and

implementation of new capabilities (tools) on the fly. This elevates the agent from a

2.

◦

◦

3.

◦

◦

Byrddynasty | Agentic AI Strategy

64

simple executor to a meta-level architect, allowing it to adapt its own functional

interface to solve novel problems that were not anticipated by its initial design [4].

The concept of self-modification extends this by allowing the agent to alter its own

internal state, logic, or even its core prompt/weights, a capability often explored in

theoretical frameworks like the Gödel Agent [2]. This involves the agent possessing a

form of self-awareness—the ability to inspect its own runtime memory, code, and

reasoning trace—and a mechanism for self-improvement—the ability to apply changes

that persist across interactions. This is a profound departure from traditional software,

where code is static at runtime. For agents, self-modification enables accelerated

learning and persistent capability evolution, where an investment in one generation of

self-edit benefits all future interactions.

From a software engineering perspective, dynamic tool generation relies heavily on

modularity and abstraction. Tools must be designed as highly abstracted,

independent units of capability, each exposing a clear, standardized interface. This

interface is typically defined using a semantic contract, such as JSON Schema, which

serves as the universal language between the LLM's reasoning engine and the external

execution environment. This abstraction allows the agent to reason about what

capability is needed (the semantic intent) without needing to know the low-level how

(the implementation details), making the generated tools composable and reusable

across different contexts.

Finally, the technical realization of this relies on semantic interface design. The LLM

must be able to translate a high-level goal into a precise, structured tool definition. This

is achieved by training the LLM to output a data structure (e.g., a Pydantic model or

JSON object) that describes the new tool's name, docstring, and parameter schema.

This structured output acts as the blueprint for the Tool Generation Module (TGM),

which then instantiates the actual executable code and registers the new capability with

the agent's Tool Router or Model Context Protocol (MCP) layer, effectively

extending the agent's own API at runtime.

Technical Deep Dive Dynamic tool generation is a multi-stage technical process that

bridges the LLM's reasoning space with the external execution environment, primarily

through the rigorous use of structured data protocols. The process begins with the Tool

Generation Module (TGM), which is an LLM instance specifically prompted to act as a

meta-programmer. Its output is not a function call, but a Tool Definition Object

(TDO), which must conform to a predefined Meta-Schema. This Meta-Schema is a

Byrddynasty | Agentic AI Strategy

65

JSON Schema that dictates the structure of a valid tool definition, typically requiring

fields for tool_name (string), tool_description (string, for semantic discovery), and

parameters (a nested JSON Schema object defining the function's inputs).

Once the TDO is generated, it enters the Validation and Instantiation phase. The

TDO is first validated against the Meta-Schema to ensure structural integrity. If valid,

the TDO is passed to a Tool Instantiation Engine (TIE). The TIE is responsible for

translating the declarative TDO into an executable artifact. For Python agents, this often

involves using libraries like Pydantic to dynamically create a BaseModel from the

parameters schema and then wrapping a generic execution function with this model. The

resulting artifact is a callable function with built-in input validation, ensuring that any

subsequent calls to the generated tool are type-safe and schema-compliant.

The instantiated tool is then registered with the Tool Router or Model Context

Protocol (MCP) layer. The MCP acts as a centralized registry, storing the tool's name,

its semantic description (docstring), and a pointer to its execution endpoint. Crucially,

the MCP indexes the tool's description using a vector embedding (e.g., using a

Sentence Transformer model). This enables Semantic Tool Discovery, where the

LLM's next prompt is embedded and compared against the tool vector index, allowing

the agent to select the most relevant tool from a potentially massive, dynamically

changing catalog, rather than relying on brittle keyword matching or including all

schemas in the prompt.

For Self-Modification, the technical deep dive involves a specialized tool called

self_edit_code or update_prompt . This tool accepts a structured input (e.g., a JSON

object with target_file , line_number , and new_content) and executes a privileged

operation on the agent's internal configuration or source code. This operation must be

executed within a secure, isolated sandbox to prevent system compromise. The

protocol for self-modification often includes a transactional mechanism where the

change is staged, validated (e.g., running unit tests on the modified code), and only

committed if the validation passes, ensuring the agent's integrity is maintained during

the self-improvement process. This entire process is logged and traced, providing a

complete audit trail of the agent's evolution.

Byrddynasty | Agentic AI Strategy

66

Framework and Standards Evidence The concept of dynamic tool generation is built

upon the standardized tool-calling mechanisms of major LLM providers, which all rely on

a structured schema for capability definition:

OpenAI Function Calling (Tools API): OpenAI pioneered the use of JSON Schema

to define tool interfaces. While initially focused on calling pre-defined functions, the

architecture inherently supports dynamic generation. The key is that the LLM is

trained to output a function_call object that strictly adheres to the input schema

defined in the tools parameter. For dynamic generation, the agent can use a "meta-

tool" (e.g., create_tool) whose schema accepts a string or JSON object representing

the new tool's definition (name, description, parameters). The agent then calls this

meta-tool, and the execution environment uses the output to register a new, callable

function, demonstrating a self-extending capability [1].

Anthropic Tool Use (Claude): Anthropic's approach is similar, utilizing XML tags

(<tool_use>) to structure the tool call, but their advanced features emphasize Tool

Search and Tool Discovery. The Anthropic-style Dynamic Tool Search Tool

allows the agent to query a vast, indexed catalog of tools (often stored in a vector

database) using semantic search based on the user's intent and the tool's docstring.

This mechanism is a prerequisite for dynamic generation, as it allows the agent to

first search for an existing tool, and only if none is found, trigger a generation

process, thereby preventing tool sprawl and promoting reuse [5].

Google Function Calling (Gemini API): Google's implementation, also known as

Tool Use, is highly schema-strict, relying on the OpenAPI Specification or JSON

Schema for function definitions. This strictness is crucial for dynamic generation, as it

forces the LLM to be precise when generating a new tool's schema. A concrete

example involves the agent generating a new Tool object, which is a Pydantic model

wrapper around the JSON Schema, and then passing this object to the runtime

environment for immediate registration and use within the current conversation turn

[6].

OpenAPI Specification and JSON Schema: These standards are the lingua franca

for defining the structure of dynamically generated tools. JSON Schema provides the

necessary primitives (type , properties , required , description) to define the input

parameters of a function. The OpenAPI Specification extends this by allowing the

definition of entire API endpoints, including paths, methods, and response schemas.

A dynamically generated tool often takes the form of a mini-OpenAPI document,

1.

2.

3.

4.

Byrddynasty | Agentic AI Strategy

67

which the agent's runtime environment can parse to create a callable function,

complete with validation and documentation.

Agent Skills Standard (Conceptual): While not a formal standard, the emerging

consensus in agent frameworks (like LangChain, CrewAI, etc.) is the use of a unified

Tool class or interface. This abstraction allows the agent to treat a simple Python

function, a complex microservice, or a dynamically generated capability with the

same interface. The core evidence lies in the Tool Router component, which uses

the standardized schema to route the LLM's call to the correct execution engine,

regardless of whether the tool was pre-defined or generated moments ago.

Practical Implementation The practical implementation of dynamic tool generation

requires tool engineers to make critical design decisions regarding the Tool Generation

Module (TGM) and the Tool Execution Protocol (TEP).

Key Design Decisions:

Schema Generation Mechanism: Should the TGM generate raw JSON Schema, or

a higher-level abstraction like a Pydantic model? Decision: Generating Pydantic

models (or similar language-native objects) is preferable, as it provides immediate

type-checking and validation within the execution environment, reducing the risk of

schema hallucination.

Tool Scope and Lifetime: Should generated tools be ephemeral (only for the

current task) or persistent (added to the global catalog)? Decision: Start with

ephemeral tools for safety and rapid prototyping. Only promote a tool to persistent

status after it has been validated by a human or an automated testing loop,

mitigating the "Tool Sprawl" pitfall.

Execution Environment: Should generated tools be executed in the main agent

process or a secure sandbox? Decision: Mandatory sandboxing (e.g., using a

containerized environment or a secure code interpreter) is required for any

dynamically generated code to prevent arbitrary code execution and system

compromise.

Usability-Flexibility Tradeoffs:

5.

1.

2.

3.

Byrddynasty | Agentic AI Strategy

68

Tradeoff

Aspect

Usability

(Agent UX)

Flexibility

(Capability)
Implementation Guidance

Schema

Strictness

Loose,

permissive

schema

(easier for

LLM to

generate)

Strict, validated

schema

(ensures

correctness)

Prioritize Strictness. Use

Pydantic/JSON Schema validation

to ensure correctness, even if it

requires more complex prompting

for the TGM.

Tool

Granularity

Coarse-

grained,

multi-step

tools (fewer

calls)

Fine-grained,

atomic tools

(more

composable)

Prioritize Fine-Grained. Atomic

tools are the building blocks for

dynamic composition. The TGM

should generate small, single-

purpose tools that can be chained

together.

Tool

Documentation

Short, high-

level

docstrings

(fast context

loading)

Detailed,

technical

docstrings

(better tool

selection)

Prioritize Detailed, Semantic

Docstrings. Use vector

embeddings of the docstrings for

semantic discovery, allowing the

LLM to select the right tool without

loading the full, verbose text into

the prompt.

Best Practices:

Meta-Schema Enforcement: Define a strict JSON Schema for the output of the

TGM (the schema of the new tool itself). This ensures that the generated tool

definition is always valid and parsable by the runtime.

Decoupling: Separate the Tool Generation Module (TGM), the Tool Router/

Registry, and the Tool Execution Environment (TEE) into distinct components.

This modularity enhances security, observability, and maintainability.

Self-Correction Loop: Implement a feedback loop where if a dynamically generated

tool fails validation or execution, the failure trace and error message are fed back to

the TGM's LLM, prompting it to generate a corrected version of the tool or its

schema.

•

•

•

Byrddynasty | Agentic AI Strategy

69

Common Pitfalls * Schema Hallucination and Non-Compliance: The LLM

generates a tool call or a new tool schema that is syntactically correct but semantically

invalid or non-compliant with the required JSON Schema structure. * Mitigation:

Implement strict, post-generation validation using a robust JSON Schema validator

(e.g., jsonschema library) and Pydantic models. Use few-shot examples of correct

schema generation in the TGM's system prompt.

Tool Over-Generation (The "Tool Sprawl" Problem): The agent generates too

many redundant or overly specific tools, leading to a bloated tool catalog and

increased cognitive load for the LLM during tool selection.

Mitigation: Introduce a Tool Catalog Management layer with metrics for tool

usage frequency, semantic similarity clustering, and an automated deprecation

policy. Encourage the TGM to generate generalized, composable tools rather than

highly specialized ones.

Security Vulnerabilities in Generated Code: Dynamically generated tools often

involve generating and executing code (e.g., Python, shell commands), creating

severe security risks (e.g., arbitrary code execution).

Mitigation: Enforce strict sandboxing (e.g., using containers or isolated execution

environments) for all generated code. Implement rigorous code review and

static analysis on the generated code before execution, even if performed by the

agent itself.

Lack of Observability and Debugging: Failures in dynamically generated tools are

hard to trace because the tool's definition and execution are ephemeral and context-

dependent.

Mitigation: Implement comprehensive tracing and logging for the entire tool

lifecycle: generation, validation, registration, call, and execution. Log the full

generated schema and code for post-mortem analysis.

Semantic Drift in Tool Descriptions: As the agent self-modifies its prompts or tool

descriptions, the semantic meaning of the tool may drift from its actual functionality,

leading to incorrect tool selection.

Mitigation: Maintain a clear separation between the tool's functional code and its

semantic description (docstring). Implement a periodic semantic

•

◦

•

◦

•

◦

•

◦

Byrddynasty | Agentic AI Strategy

70

consistency check that validates the description against the tool's actual input/

output behavior.

Infinite Self-Modification Loops: The agent enters a recursive loop where it

attempts to fix a perceived flaw in its own logic or toolset, only to create a new flaw

that triggers another fix attempt.

Mitigation: Implement a finite state machine or a budget/depth limit on self-

modification actions. Require a high-confidence threshold or external human

validation for critical self-edits.

Real-World Use Cases 1. Automated Data Pipeline Generation (Success Story):

* Scenario: A data science agent is tasked with ingesting data from a novel,

undocumented API and transforming it for a specific machine learning model. *

Dynamic Tooling: The agent first uses a "Schema Discovery Tool" to analyze the API's

endpoints. It then dynamically generates a new Python tool, fetch_and_transform_data ,

complete with a Pydantic schema for the API call parameters and a custom

transformation function. This tool is instantly registered and used to complete the

pipeline. * Success: The agent successfully integrates a new data source without human

intervention, demonstrating rapid capability extension and zero-shot adaptation to

a novel interface.

2. Custom Code Interpreter for Novel Libraries (Success Story): * Scenario: A

coding agent needs to use a newly released, niche Python library (e.g., a specialized

graph theory package) that is not in its pre-trained knowledge. * Dynamic Tooling: The

agent reads the library's documentation, generates a set of small, atomic tools (e.g.,

graph_init , find_shortest_path) with precise input schemas derived from the library's

function signatures. It then uses these generated tools to solve the problem. * Success:

The agent exhibits knowledge generalization by translating external documentation

into internal, executable capabilities, effectively extending its own programming

environment.

3. Financial Trading Strategy Self-Optimization (Failure Mode): * Scenario: A

financial agent is tasked with optimizing a trading strategy. It is given a "Self-Modify

Strategy" tool. * Failure Mode: The agent identifies a flaw in its current strategy logic

and dynamically generates a self-modification that introduces a subtle, non-obvious bug

(e.g., a race condition or an incorrect calculation of risk exposure). Because the

validation loop is insufficient, the agent executes the flawed self-modification, leading to

•

◦

Byrddynasty | Agentic AI Strategy

71

catastrophic trading losses. * Failure: This highlights the critical need for rigorous,

external validation and security sandboxing for self-modification, as the agent's

internal reasoning may not be sufficient to guarantee correctness in high-stakes

environments.

4. Dynamic Configuration Management (Success Story): * Scenario: A DevOps

agent manages a cloud infrastructure where new services are constantly deployed, each

requiring a unique set of monitoring and logging tools. * Dynamic Tooling: When a new

service is deployed, the agent reads its configuration file and dynamically generates a

new monitor_service_X tool, which encapsulates the specific API calls and credentials

needed to check the service's health. * Success: The agent achieves dynamic

configuration management, ensuring that its operational capabilities are always

synchronized with the constantly changing environment, reducing manual configuration

overhead.

Sub-Skill 8.4: The Agent Skills Standard and

Progressive Disclosure

Sub-skill 8.4a: Agent Skills Standard - Anthropic Agent Skills

format, SKILL.md structure, modular skill packaging, progressive

disclosure

Conceptual Foundation The Agent Skills Standard, particularly as exemplified by

Anthropic's implementation, is fundamentally rooted in established software engineering

and cognitive science principles. The core concept is the application of Modularity and

Separation of Concerns (SoC) to the agent's knowledge base and capability set. Each

"Skill" is a self-contained, reusable software component, isolating the logic and

resources required for a specific domain (e.g., PDF processing, web scraping) from the

agent's general reasoning engine. This architecture adheres to the Interface

Segregation Principle (ISP), where the agent only interacts with the minimal, high-

level interface—the Skill's name and description—before committing to a full interaction.

The most critical theoretical foundation is the concept of Progressive Disclosure,

borrowed from user experience (UX) design and applied to the agent's context window.

Byrddynasty | Agentic AI Strategy

72

In UX, progressive disclosure manages cognitive load by revealing information only

when the user needs it. In the agent context, this translates to managing the token

budget. The Skill's Level 1 metadata (name and description) acts as a Semantic

Interface, a lightweight, human-readable contract that allows the LLM to perform high-

level reasoning and tool selection without incurring the token cost of the full

implementation details. This is a direct application of the principle of Lazy Loading to

the agent's operational context, ensuring that only the necessary procedural knowledge

and resources are loaded into the working memory (context window) at the moment of

execution.

This approach also leverages the concept of Externalized Cognition by treating the

filesystem as a form of long-term, external memory. The agent's core LLM is the

working memory, which is expensive and limited. The Skill directory, with its SKILL.md

and auxiliary files, is the externalized, cheap, and virtually unlimited long-term memory.

The bash tool acts as the retrieval mechanism, effectively turning the agent's tool-use

process into a sophisticated, on-demand information retrieval and execution loop. This

architecture shifts the burden from the LLM's internal knowledge and context capacity to

a robust, externalized software environment, enabling the agent to scale its capabilities

far beyond the limits of its initial context window.

Technical Deep Dive The technical foundation of the Agent Skills Standard is the

fusion of a structured file format with a dynamic execution environment. The core

protocol is the agent's ability to interact with a virtualized filesystem using bash

commands. This is a departure from pure function-calling models (like OpenAI's original

functions API) which rely solely on JSON Schema for tool invocation. In the Agent Skills

model, the tool itself is a directory, and the agent's interaction is a sequence of file

operations and script executions.

The SKILL.md file is the central technical artifact, acting as a structured, human-

readable Interface Definition Language (IDL) for the agent.

SKILL.md Schema Example (Conceptual):

name: file-search-tool
description: Search for files and content within the project directory. Use for finding specific code snippets, configuration files, or data.
parameters:
 query:
 type: string
 description: The search term or regex pattern to look for.

Byrddynasty | Agentic AI Strategy

73

 scope:
 type: string
 description: The glob pattern defining the search scope (e.g., "**/*.py").

File Search Tool Usage Guide

Quick Start: Find Python files
To find all Python files in the current directory and subdirectories, use the following command:
```bash
find . -name "*.py"

Advanced: Grep for a function name

To search for the function calculate_checksum  in all Python files, use:

grep -r "def calculate_checksum" --include="*.py" .

... ```

The Progressive Disclosure Protocol operates as follows: 1. Discovery (Level 1):

The agent's system prompt contains the YAML frontmatter (name/description) of all

available skills. The agent uses this semantic information to decide if a tool is relevant.

2. Invocation (Level 2): If relevant, the agent generates a bash  command to read

the SKILL.md  file (e.g., bash: read /skills/file-search-tool/SKILL.md ). The contents of

this file are then injected into the context, providing the agent with the necessary

procedural knowledge and concrete command examples. 3. Execution (Level 3): The

agent then formulates and executes a final bash  command, which may call an external

script (e.g., bash: /skills/file-search-tool/scripts/search.sh --query "..." ). Crucially,

the script's source code is never loaded into the context; only the script's output

(stdout/stderr) is returned to the agent, minimizing token consumption and ensuring

deterministic execution.

This technical architecture provides a powerful decoupling of the tool's interface (Level

1) from its documentation (Level 2) and its implementation (Level 3). It enables a

highly modular system where tool documentation can be extensive and complex without

penalizing the agent's performance on simple tasks, a critical design pattern for building

scalable, general-purpose agents. The use of bash  as the universal execution protocol

makes the system language-agnostic and highly flexible, supporting any executable

script or binary.

Byrddynasty | Agentic AI Strategy

74



Framework and Standards Evidence The Agent Skills Standard represents a

significant architectural evolution from the initial wave of function-calling APIs, primarily

by introducing the concept of progressive disclosure and leveraging the filesystem

as a resource manager.

Feature

OpenAI

Function

Calling

(Legacy)

Anthropic

Tool Use

(JSON

Schema)

Anthropic

Agent Skills

Standard

OpenAPI/

JSON Schema

Tool Definition JSON Schema

(in prompt)

JSON Schema

(in prompt)

Directory

Structure + 

SKILL.md

YAML/JSON

(External)

Context

Management

Monolithic (All

schema loaded)

Monolithic (All

schema loaded)

Progressive

Disclosure (3

Levels)

N/A (Pure

Specification)

Execution

Protocol

API Call (JSON

payload)

API Call (JSON

payload)

bash

commands

(Filesystem I/

O)

N/A (Pure

Specification)

Documentation Limited to 

description

field

Limited to 

description

field

Extensive,

modular

Markdown

files

External

Documentation

Token

Efficiency

Poor (High

upfront cost)

Poor (High

upfront upfront

cost)

Excellent

(Minimal

upfront cost)

N/A

Concrete Examples:

OpenAI/Google Function Calling: These systems rely on a single, comprehensive

JSON Schema object passed in the system prompt. For a tool like create_user(name,

email, role) , the entire schema is loaded: json { "type": "function", "function":

{ "name": "create_user", "description": "Creates a new user in the database.",

"parameters": { ... full JSON Schema ... } } }  This is Level 1 and Level 2 information

combined, leading to context bloat for large toolsets.

1. 

Byrddynasty | Agentic AI Strategy

75



Anthropic Agent Skills (SKILL.md): The Agent Skills approach decouples this

information. Only the Level 1 metadata is loaded initially: yaml --- name: user-

management description: Create, update, and delete user accounts. Use when the user

requests changes to the user database. ---  The detailed usage instructions, API

endpoints, and complex parameter schemas are contained in the body of SKILL.md

(Level 2) and auxiliary files (Level 3), which are only loaded after the agent decides

to use the user-management  skill. This shift from a "schema-first, monolithic"

approach to a "semantic-first, progressively disclosed" architecture is the core

innovation.

OpenAPI Integration: The Agent Skills Standard can be seen as a practical

implementation layer on top of an OpenAPI specification. The SKILL.md  can contain

the procedural instructions on how to call the API endpoints defined in an external

OpenAPI document, and the Level 3 resources can include the actual YAML/JSON file,

which the agent can read on-demand to construct the final API call. This allows the

agent to leverage the rigor of OpenAPI for API definition while using the flexibility of

Markdown for agent-centric procedural guidance.

Practical Implementation Tool engineers must make critical design decisions when

adopting the Agent Skills Standard, primarily concerning the balance between usability

(for the agent) and flexibility (of the tool).

Key Design Decisions:

Granularity of Skills: Should a single skill handle all database operations ( database-

manager ) or should it be broken down into granular skills ( user-create , user-read )?

Decision Framework: Favor coarse-grained skills (e.g., pdf-processing ) for

Level 1 discovery, as this minimizes the initial token load. Use the Level 2 

SKILL.md  to guide the agent through the fine-grained sub-tasks (e.g., "To

extract text, use X; to merge, use Y"). This optimizes for both low discovery cost

and comprehensive capability.

Instruction vs. Code: What content belongs in SKILL.md  (instructions) versus a

Level 3 script (code)?

Decision Framework: Place non-deterministic, high-level workflow

guidance in SKILL.md  (e.g., "Always validate input before calling the API"). Place 

deterministic, complex, or security-sensitive logic in Level 3 scripts (e.g.,

2. 

3. 

1. 

◦ 

2. 

◦ 

Byrddynasty | Agentic AI Strategy

76



the actual API call logic, data validation functions). This leverages the LLM's

reasoning for planning and the script's reliability for execution.

Usability-Flexibility Tradeoffs:

Tradeoff
Usability (Agent

Experience)

Flexibility (Tool

Engineer)
Best Practice

SKILL.md

Detail

High detail leads to

better execution

and fewer errors.

High detail

increases Level 2

token cost when

triggered.

Keep SKILL.md  concise,

focusing on the most common

use cases. Move advanced or

rare workflows to Level 3

auxiliary files.

Script

Abstraction

High abstraction

(e.g., a single 

run.sh  script) is

easier to call.

Low abstraction

(many small,

specialized scripts)

is easier to

maintain and

debug.

Use a single, well-documented

entry-point script that accepts

structured arguments, but

ensure the SKILL.md  clearly

explains the script's internal

logic and dependencies.

Error

Handling

Detailed,

structured error

messages from

scripts are easier

to parse.

Generic error

handling is faster

to implement.

Mandate structured output

for errors (e.g., JSON or XML)

from Level 3 scripts. This is

non-negotiable for agent

reliability.

Common Pitfalls * Pitfall: Contextual Overload in SKILL.md . The engineer includes

too much information in the Level 2 SKILL.md  body, causing the token cost to exceed

the optimal threshold (e.g., >5k tokens), effectively negating the benefit of progressive

disclosure. * Mitigation: Enforce a strict token budget for SKILL.md . Use the SKILL.md

as a table of contents and a quick-start guide, aggressively moving detailed API

Byrddynasty | Agentic AI Strategy

77



references, complex examples, and non-essential documentation to Level 3 auxiliary

Markdown files.

Pitfall: Ambiguous Level 1 Descriptions. The name  and description  in the YAML

frontmatter are too vague, leading the agent to frequently select the wrong skill

(false positive) or fail to select the correct skill (false negative).

Mitigation: Descriptions must be verb-centric and include trigger keywords.

For example, instead of "Database Tool," use "Manage user accounts, including

creation, deletion, and password reset. Use when the user mentions 'user,'

'account,' or 'database.'"

Pitfall: Unreliable bash  Execution. Level 3 scripts rely on environment variables,

external network access, or non-standard shell features, leading to non-deterministic

execution in the sandboxed environment.

Mitigation: Enforce a zero-dependency policy for Level 3 scripts where

possible. All scripts must be self-contained, use standard POSIX commands, and

handle all I/O via stdin/stdout, ensuring they are robust against changes in the

execution environment.

Pitfall: Lack of Structured Script Output. Level 3 scripts return unstructured text

(e.g., a long log file) instead of structured data (JSON, XML), forcing the LLM to

waste tokens and compute power on parsing.

Mitigation: Mandate JSON output for all successful script executions. The

output should include a status  field, a data  field, and a message  field. This

ensures efficient, reliable data transfer back to the agent's context.

Pitfall: Inconsistent Skill Directory Structure. The engineer deviates from the

standard directory layout (e.g., placing scripts outside the scripts/  folder), making

the skill difficult for other agents or human developers to understand and maintain.

Mitigation: Use a Skill Linter or a Skill Creation CLI (like Anthropic's skill-

creator ) to enforce a canonical directory structure and file naming convention.

• 

◦ 

• 

◦ 

• 

◦ 

• 

◦ 

Byrddynasty | Agentic AI Strategy

78



Real-World Use Cases The quality of tool engineering, particularly the implementation

of progressive disclosure and modular packaging, is critical in complex, production-

grade agent systems.

Use Case: Enterprise Data Analysis Agent:

Success Story: A well-engineered data-analysis  skill is packaged with Level 1

metadata for discovery, a Level 2 SKILL.md  detailing the standard workflow (e.g.,

"load data, clean, visualize, report"), and Level 3 resources containing 50+

specialized Python scripts for different statistical tests and a 10MB database

schema file. The agent successfully analyzes a user request, loads only the 

SKILL.md  and the single required statistical script, and completes the task

efficiently. The progressive disclosure saves the cost and time of loading the 10MB

schema and 49 irrelevant scripts.

Failure Mode: If all 50 scripts and the schema were loaded into the context (ad-

hoc approach), the agent would immediately hit the context limit, fail to process

the user's request, or spend an excessive amount of time and tokens reasoning

over irrelevant code and data.

Use Case: Multi-Step Software Development Agent:

Success Story: A developer agent uses a code-generation  skill, a testing  skill,

and a deployment  skill. Each skill is a modular directory. The testing  skill's 

SKILL.md  guides the agent to use a Level 3 script ( scripts/run_tests.sh ) which

executes the tests and returns a concise JSON summary of the results. The agent

uses this structured output to decide whether to proceed to the deployment  skill.

Failure Mode: If the run_tests.sh  script returned a raw, multi-page log file

(unstructured output), the agent would have to load the entire log into context,

leading to a high probability of misinterpreting the test results or running out of

context space for the subsequent deployment steps.

Use Case: Regulatory Compliance Agent:

Success Story: A compliance-check  skill is designed to handle different regional

regulations. The Level 1 description is generic. The Level 2 SKILL.md  prompts the

agent to first identify the user's region. It then directs the agent to load the

specific Level 3 file (e.g., regulations/EU_GDPR.md  or regulations/US_HIPAA.md ). This

modularity ensures the agent is always using the most current and relevant

regulatory text without having to load all global regulations simultaneously.

1. 

◦ 

◦ 

2. 

◦ 

◦ 

3. 

◦ 

Byrddynasty | Agentic AI Strategy

79



Conclusion

Semantic Capability and Tool Engineering is the art and science of building the

interfaces through which agents interact with the world. The quality of these tools—their

clarity, robustness, and discoverability—directly determines the capabilities of the

agentic system. By moving from ad-hoc integration to a systematic engineering

discipline, organizations can create a rich ecosystem of reusable, composable, and

semantically meaningful tools. This enables agents to move beyond simple function calls

to complex, multi-step problem-solving, unlocking the full potential of agentic AI.

Byrddynasty | Agentic AI Strategy

80


	Skill 8: Tool Engineering
	Deep Dive Analysis: Skill 8 - Semantic Capability and Tool Engineering
	Executive Summary
	Sub-Skill 8.1: Function Calling and Tool Definitions
	Sub-skill 8.1a: Designing Clear Tool Schemas - JSON Schema and OpenAPI specifications, input/output definitions, parameter constraints, type safety
	Sub-skill 8.1b: Implementing Robust Error Handling
	Sub-skill 8.1c: Function Calling Protocols - OpenAI Function Calling, Anthropic Tool Use, Google Function Calling, Protocol Differences and Best Practices
	Sub-skill 8.1: Tool Engineering as Interface Design - Semantic Usability and Discoverability

	Sub-Skill 8.2: Dynamic Tool Discovery and Composition
	Sub-skill 8.2a: Tool Registries and Catalogs - Searchable tool catalogs, indexing by capability and domain, metadata standards, versioning
	Sub-skill 8.2b: Semantic Search for Tools - Embedding-based tool discovery, natural language queries for tools, similarity search, relevance ranking
	Sub-skill 8.2c: Tool Composition and Chaining - Composable tool interfaces, multi-step workflows, tool dependencies, orchestration patterns

	Sub-Skill 8.3: Tool UX Design for Agents
	Sub-skill 8.3a: Writing Clear Tool Descriptions - Unambiguous documentation, when-to-use guidance, input/output semantics, agent-oriented writing
	Sub-skill 8.3b: Providing Tool Examples - Example Invocations, Edge Cases, Common Patterns, Learning from Examples
	Sub-skill 8.3c: Optimizing Semantic Altitude: Balancing Specificity and Flexibility, Abstraction Levels, Generalization vs Precision
	Sub-skill 8.3: Dynamic Tool Generation and Agent Self-Modification

	Sub-Skill 8.4: The Agent Skills Standard and Progressive Disclosure
	Sub-skill 8.4a: Agent Skills Standard - Anthropic Agent Skills format, SKILL.md structure, modular skill packaging, progressive disclosure

	Advanced: Grep for a function name
	Key Design Decisions:
	Usability-Flexibility Tradeoffs:

	Conclusion


