Byrddynasty | Agentic Al Strategy

Skill 8: Tool Engineering

Semantic Capability and Tool Engineering

Nine Skills Framework for Agentic Al

Terry Byrd

byrddynasty.com

Byrddynasty | Agentic Al Strategy

Deep Dive Analysis: Skill 8 -
Semantic Capability and Tool
Engineering

Author: Manus AI Date: January 1, 2026 Version: 1.0

Executive Summary

This report provides a comprehensive deep dive into Skill 8: Semantic Capability and
Tool Engineering. Agents extend their capabilities by using tools—functions, APIs, and
services that allow them to interact with the world. The quality of these tools is a
primary determinant of agent performance. This skill addresses the critical discipline of
designing, building, and managing tools that are discoverable, understandable, and safe
for agents to use.

This analysis is the result of a wide research process that examined twelve distinct
dimensions of this skill, organized into its four core sub-competencies, plus cross-
cutting and advanced topics:

1. Function Calling and Tool Definitions: Designing clear, robust tool schemas and
error handling.

2. Dynamic Tool Discovery and Composition: Enabling agents to find and chain
tools on the fly.

3. Tool UX Design for Agents: Crafting tool descriptions and documentation for
semantic usability.

4. The Agent Skills Standard and Progressive Disclosure: Leveraging standards
for modular, scalable tool packaging.

For each dimension, this report details the conceptual foundations, provides a technical
deep dive, analyzes evidence from modern frameworks and standards, outlines practical
implementation guidance, and discusses usability considerations. The goal is to equip

Byrddynasty | Agentic Al Strategy

architects and engineers with the in-depth knowledge to build a rich ecosystem of high-
quality tools for enterprise-grade agentic Al.

Sub-Skill 8.1: Function Calling and Tool Definitions

Sub-skill 8.1a: Designing Clear Tool Schemas - JSON Schema and
OpenAPI specifications, input/output definitions, parameter
constraints, type safety

Conceptual Foundation The foundation of clear tool schema design rests on
established principles from Software Engineering and API Design, primarily the
concept of an Interface Definition Language (IDL) and Design by Contract (DbC).
In this context, JSON Schema and OpenAPI serve as the IDL, defining the contract
between the LLM (the caller) and the external tool (the callee). This contract specifies
the function signature, including the tool name, a semantic description, and the input/
output structure. The theoretical underpinning is that by formalizing the interface, we
decouple the LLM's reasoning from the tool's implementation, ensuring that the
interaction is predictable and verifiable [6].

The concept of semantic interface is crucial. Unlike traditional APIs where the contract
is primarily for human developers and compilers, the agent tool schema must be
semantically rich enough for the LLM to reason about its utility. This is achieved through
high-quality description fields for the tool and its parameters, which the LLM uses to
determine when and how to call the function. The schema transforms the tool from a
mere function into an affordance—a perceived possibility for action—that the LLM can
integrate into its planning and reasoning process (e.g., ReAct pattern) [7].

Furthermore, the emphasis on type safety and parameter constraints directly
addresses the inherent unreliability of LLMs in generating precise, structured output. By
leveraging JSON Schema's features (e.g., type, required, enum, pattern), the schema
acts as a grammar that constrains the LLM's output space. This constraint-based
generation is a form of schema-guided decoding, which significantly increases the
probability of the LLM producing a valid, executable tool call, thereby improving the
overall reliability and security of the agent system [8]. This systematic approach

Byrddynasty | Agentic Al Strategy

elevates tool use from a brittle prompt-based heuristic to a robust, software-engineered
component.

Technical Deep Dive The technical core of clear tool schema design is the use of
JSON Schema as a declarative language for defining the structure of the tool's input
payload. A tool definition typically consists of three parts: the tool's natural language
description, the tool's name (which maps to the executable function), and the
parameters object, which is a JSON Schema object of type: object . This object defines
the arguments the LLM must generate.

Schema Structure and Type Safety: The properties within the parameters object are
where type safety is enforced. For example, to ensure a parameter is a whole number,
the schema uses "type": "integer" . To enforce a range, "minimum" and "maximum" are
used. For complex data structures, the type: object or type: array is used recursively.
The required array is paramount, as it explicitly tells the LLM which arguments are
mandatory for a successful tool call.

{
"type": "function",
"function": {
"name": "book_flight",
"description": "Books a flight from an origin to a destination on a specific date.",
"parameters": {
"type": "object",
"properties": {

"origin": {"type": "string", "description": "The IATA code for the departure airpq
"destination": {"type": "string", "description": "The IATA code for the arrival a
"departure_date": {"type": "string", "format": "date", "description": "The date o

s

"required": ["origin", "destination", "departure_date"]

Protocol and Implementation: The LLM provider's API acts as the protocol layer.
The agent sends the tool definitions (like the JSON above) to the LLM. The LLM, upon
receiving a user prompt, decides whether to call a tool. If it does, it generates a
structured response containing the tool call. The agent runtime then intercepts this
response, validates the generated arguments JSON against the original schema, and
only if valid, executes the corresponding host function (book_flight in this case) with

Byrddynasty | Agentic Al Strategy

the deserialized arguments. This validate-before-execute pattern is the cornerstone
of robust agentic systems.

Parameter Constraints and Semantic Usability: Beyond basic types, the use of
semantic constraints is key. The description field for each property is the primary
input for the LLM's reasoning. A poor description like "city": {"type": "string"} is
insufficient. A clear description like "city": {"type": "string", "description": "The full
name of the city, e.g., 'San Francisco', not the airport code."} significantly improves
the LLM's accuracy. Furthermore, using format (e.g., date, email , uri) Or pattern
(for regex validation) provides the LLM with a target structure to generate, effectively
leveraging the model's pattern-matching capabilities for structured output [14]. This
technical rigor ensures that the LLM's output is not just text, but a verifiable, executable
data structure. The use of OpenAPI extends this by allowing the definition of the tool's
output schema as well, enabling the agent to better parse and reason about the results
returned by the external API.

Framework and Standards Evidence Major LLM providers have converged on JSON
Schema as the de facto standard for defining tool contracts, though their specific
implementation protocols vary:

1. OpenAl Function Calling: OpenAl pioneered the widespread use of JSON Schema
for tool definition. The model is provided with a list of functions, each described by a
name , description, and a parameters object which is a full JSON Schema object
defining the function's arguments. The model's response includes a tool_calls array,
where each element contains the function name and a JSON string of arguments
that conforms to the provided schema.

o Example: A function get_weather would have a parameters schema with a type:
object , properties including city (type: string, description: "The city name"),
and required: ["city"] .

2. Anthropic Tool Use (Claude): Anthropic also uses JSON Schema for tool definition,
but the interaction is framed within a structured XML-like format called <tool_use>
tags in the conversation. The tool definition is passed in the system prompt or a

Byrddynasty | Agentic Al Strategy

dedicated tool configuration. The model generates a <tool_use> block containing the
tool name and a JSON payload for the arguments, which must adhere to the schema.

o Key Difference: Anthropic often emphasizes the importance of providing detailed,
high-quality descriptions and examples within the schema to guide the model's
reasoning, often leveraging the model's strong contextual understanding.

3. Google Function Calling (Gemini): Google's approach is similar, using a
FunctionDeclaration object that includes the function name, description, and an
parameters field defined using OpenAPI/JSON Schema syntax. The model's response
contains a FunctionCall object with the name and a JSON structure for the
arguments.

o Technical Detail: Gemini's API often supports more complex data types and
structures directly, aligning closely with the OpenAPI specification for robust API
integration.

4. OpenAPI Specification (OAS): While not an LLM-specific framework, OAS
(formerly Swagger) is the foundational standard. Many agent frameworks, including
LangChain and Llamalndex, use OpenAPI documents to automatically generate LLM-
compatible tool schemas. OAS extends JSON Schema to define entire APIs, including
multiple endpoints, HTTP methods, request/response bodies, and security schemes,
making it ideal for integrating complex REST services as agent tools.

5. Agent Skills Standard (Conceptual): Emerging standards aim to create a
protocol-agnostic definition layer. The goal is a universal tool manifest that can be
compiled into the specific JSON Schema formats required by OpenAI, Anthropic, or
Google. This promotes tool reusability and portability across different LLM backends,
ensuring the core schema definition remains a single source of truth [9].

Practical Implementation The key decision for tool engineers is determining the
granularity and specificity of the tool schema. Should a tool be a monolithic function
with many optional parameters, or should it be broken down into several atomic, single-
purpose functions? Best practice dictates favoring atomic, single-purpose tools to
minimize the LLM's cognitive load and reduce the chance of misinterpreting complex
parameter dependencies.

The central usability-flexibility tradeoff lies in the balance between constraining
the LLM's output (for reliability) and allowing for complex, flexible inputs (for

Byrddynasty | Agentic Al Strategy

capability). Over-constraining with too many enum values or rigid pattern regexes can
lead to the LLM failing to generate a valid call even when the intent is correct.
Conversely, under-constraining with only type: string for all parameters leads to
unpredictable, unsafe outputs.

A practical decision framework involves:

L. N Flexibility-
Decision Reliability-Focused)
. X Focused Best Practice
Point (Constraint) i
(Usability)
Parameter Use enum, number Use generic Use the most specific type
Type with minimum / string or object and constraint possible
maximum , and format with minimal without restricting valid
(e.g., date-time). constraints. inputs.
Tool Focus on technical Focus on user Combine both: a concise
Description function and side intent and high- technical summary and a
effects. level goal. clear, user-centric

description of the outcome.

Schema Small, flat schemas Large, deeply Principle of Least

Size (max 5-7 parameters). nested schemas to Schema: Keep schemas
model complex small and atomic. Use
data structures. object parameters only

when necessary for
grouping.

Implementation Best Practices include using Pydantic (or similar libraries) to define
the schema in code, ensuring the schema is always synchronized with the function's
actual signature. Furthermore, all parameters should be treated as required unless
there is a strong, documented reason for them to be optional, as LLMs are generally
more reliable when generating required fields [12]. Finally, the use of semantic
descriptions in the description field for every parameter is non-negotiable, as this is
the primary signal the LLM uses for argument generation.

Common Pitfalls * Vague or Ambiguous Descriptions: The natural language
description of the tool or its parameters is unclear, leading the LLM to misinterpret the
tool's purpose or the required arguments. * Mitigation: Use concise, action-oriented
descriptions. Include examples in the description field. Ensure the description clearly

Byrddynasty | Agentic Al Strategy

states the tool's side effects and return value. * Insufficient Parameter Constraints:
Relying only on basic types (string , number) without using advanced JSON Schema
features like enum, pattern, minimum / maximum , or format (e.g., date-time , email). This
leads to the LLM generating syntactically correct but semantically invalid inputs. *
Mitigation: Maximize the use of all available JSON Schema keywords to constrain the
LLM's output space. Use enum for categorical data and pattern for structured identifiers
(e.g., product IDs). * Schema Drift and Lack of Versioning: The tool's underlying
API changes, but the LLM-facing schema is not updated, causing the agent to call a
non-existent or broken function signature. * Mitigation: Implement a contract-first
development process where the schema is the source of truth. Use versioning (e.g., /
v1/) for tools and maintain a registry to manage schema evolution. * Overly Complex
or Deeply Nested Schemas: Presenting the LLM with a massive, deeply nested
schema for a simple task, which consumes excessive context tokens and increases the
cognitive load on the model, leading to higher error rates. * Mitigation: Follow the
Principle of Least Schema. Design small, atomic tools with flat, minimal parameter
structures. Use one0Of or anyOf sparingly and only when necessary to model complex
polymorphism. * Ignoring Type Safety in Host Language: Generating a JSON
payload from the LLM but failing to validate and deserialize it into a strongly-typed
object in the host language (e.g., Python, Java), leading to runtime errors. * Mitigation:
Use type-safe deserialization libraries (like Pydantic in Python) that automatically
validate the LLM's JSON output against the defined schema before execution [5].

Real-World Use Cases 1. Financial Transaction Processing (Criticality: High
Safety) * Success Story: A well-desighed transfer_funds tool schema uses strict
constraints: source_account and target_account are defined with a pattern regex for
account numbers; amount iS @ number with minimum: 0.01 and maximum limits; and a
required currency field uses an enum: ["USD", "EUR", "GBP"] . This clear schema ensures
type safety and prevents the LLM from hallucinating invalid account numbers or
negative transfer amounts, mitigating significant financial risk. * Failure Mode: An ad-
hoc tool described as "send money" with a single details string parameter. The LLM
might generate "send $100 to John Doe" which the system fails to parse, or worse,
generates a valid but incorrect account number, leading to a non-recoverable transfer
error.

2. Database Query Generation (Criticality: High Accuracy) * Success Story: A
query_database tool is provided with a schema that dynamically includes only the
relevant table and column names from the database schema, using an enum for column

Byrddynasty | Agentic Al Strategy

names and a constrained string for the query condition. This schema pruning and
constraint application drastically improves the LLM's ability to generate syntactically and
semantically correct SQL queries, preventing injection vulnerabilities and incorrect data
retrieval. * Failure Mode: Providing the LLM with the entire, unconstrained database
schema. The LLM hallucinates non-existent columns or generates queries that violate
foreign key constraints, resulting in query failures or, in a write context, data corruption.

3. Customer Support Triage (Criticality: High Reliability) * Success Story: A
triage_ticket tool uses a schema with a required priority parameter defined by a
constrained enum: ["low", "medium", "high", "critical"] and a required department
parameter with a fixed enum list. The LLM is forced to categorize the user's request into
a predefined, valid set of options, enabling reliable routing to the correct internal
system. * Failure Mode: The tool schema uses a free-form priority_level string. The
LLM generates variations like "super high," "urgent," or "P1," which the downstream
system cannot map, causing the ticket to be misrouted or stuck in an unassigned queue
[13].

Sub-skill 8.1b: Implementing Robust Error Handling

Conceptual Foundation The foundation of robust error handling in agent tool
engineering is rooted in three core disciplines: Software Engineering, API Design,
and Semantic Interface Theory. From a software engineering perspective, the
principle of Fail Fast, Fail Loudly, and Fail Informatively is paramount. When a tool
execution fails, the resulting output must not be a vague, unstructured string, but a
highly structured, machine-readable payload that clearly communicates the nature,
scope, and severity of the failure. This structure is essential for the agent's reasoning
loop, allowing it to transition from a state of failure to a state of self-correction or
graceful degradation. This moves beyond traditional exception handling, where the
goal is merely to prevent program termination, to a semantic layer where the goal is to
enable intelligent recovery.

API design contributes the concept of Standardized Error Contracts. Just as
successful API calls adhere to a defined response schema, error responses must also
conform to a predictable structure, typically leveraging HTTP status codes for transport-
level errors and a standardized JSON body for application-level errors. The key
innovation for agent tools is the shift from human-interpretable error messages to
agent-interpretable error messages. This means the message must contain not just

Byrddynasty | Agentic Al Strategy

a description of what went wrong, but also explicit or implicit retry guidance and
causal information. For example, an error message should distinguish between a
transient network issue (retryable) and a permanent authentication failure (non-
retryable without human intervention). This semantic richness transforms the error
response from a mere notification into an actionable piece of data for the LLM's planning
mechanism.

Semantic Interface Theory dictates that the tool's interface, including its error contract,
must be designed for maximum discoverability and understandability by the LLM.
The LLM's primary mode of interaction is through natural language reasoning over the
provided tool schema and documentation. Therefore, the error structure must be
explicitly defined within the tool's schema (e.g., OpenAPI or JSON Schema) to be
ingested by the LLM during the initial prompt context. This explicit definition, including
standardized error codes and suggested actions, allows the LLM to integrate error
prediction and recovery into its initial plan, significantly improving the robustness and
reliability of multi-step agentic workflows. The theoretical underpinning here is that a
well-defined error space reduces the cognitive load on the LLM, enabling more
deterministic and reliable decision-making.

Technical Deep Dive Implementing robust error handling requires a layered technical
approach, starting with a rigorous 3SON Schema definition for all tool responses,
including the error state. The core of this is a standardized error object that is returned
in the tool output, regardless of the underlying API's native error format. This object
must contain three critical components: a machine-readable code , @ human-readable
message , and an agent-interpretable details object which includes retry_guidance .

A typical structured error response schema would look like this:

{
"type": "object",
"properties": {
"status": {"type": "string", "enum": ["success", "error"]},
"error": {
"type": "object",

"properties": {
"code": {"type": "string", "description": "A standardized, machine-readable error
"message": {"type": "string", "description": "A detailed, human-readable descript
"retry_guidance": {
"type": "object",
"properties": {
"is_retryable": {"type": "boolean", "description": "True if the error is trans

10

Byrddynasty | Agentic Al Strategy

"suggested_delay_seconds": {"type": "integer", "description": "The minimum de
"agent_action_required": {"type": "string", "description": "Specific action t
3>
"required": ["is_retryable", "agent_action_required"]
ks
s

"required": ["code", "message", "retry_guidance"]
ks
s

"required": ["status"]

This schema ensures that the LLM receives a predictable structure. The code field is
crucial for deterministic logic, allowing the agent to map the error to a pre-programmed
recovery strategy. The agent_action_required field provides explicit, high-level
instructions, which is a key differentiator from traditional API error handling.

The API Pattern that supports this is the Semantic Wrapper Pattern. Since most
legacy APIs do not return agent-friendly errors, a wrapper layer is implemented
between the LLM and the raw API. This wrapper intercepts the raw API response (e.g.,
HTTP 404, a Python exception, or a SOAP fault), translates it into the standardized
structured error format defined above, and then passes the structured error back to the
LLM as the tool's output. This abstraction shields the LLM from the complexity and
inconsistency of the underlying systems, ensuring a consistent error language across all
available tools.

Implementation considerations center on failure classification. Errors must be
categorized into three main types: Transient (e.g., network timeout, temporary rate
limit), Permanent/Deterministic (e.g., invalid input, resource not found,
authentication failure), and Agent-Induced (e.g., malformed function call arguments,
logical error in the agent's plan). The classification determines the is_retryable and
agent_action_required fields. For Transient errors, the wrapper should suggest a retry
with an Exponential Backoff with Jitter strategy. For Permanent errors, the wrapper
must clearly state the required agent action, such as requesting new credentials or re-
evaluating the initial query.

11

Byrddynasty | Agentic Al Strategy

Framework and Standards Evidence The major LLM platforms and standards have
converged on the necessity of structured error handling, though the implementation
details vary.

1. OpenAl Function Calling: While OpenAlI's core function calling mechanism
primarily focuses on the input schema, the tool output is a string that the developer
controls. Best practice dictates that developers return a 3SON string conforming to
a custom error schema (like the one detailed above) when a tool fails. The LLM then
ingests this structured JSON as the tool's result. For example, if a get_stock_price
tool fails due to an invalid ticker, the developer's code returns: {"status": "error",
"error": {"code": "INVALID_INPUT", "message": "Ticker symbol 'XYZ' is not recognized.",
"retry_guidance": {"is_retryable": false, "agent_action_required": "REPHRASE_QUERY"}}} .
The LLM reads this and understands it must ask the user for a valid ticker, rather
than simply retrying the API call.

2. Anthropic Tool Use (Claude): Anthropic's approach emphasizes providing rich,
detailed information in the tool output. Their documentation explicitly guides
developers to handle errors by returning a descriptive string or a structured object in
the tool result. The key difference is the emphasis on natural language
interpretability within the structured output. Anthropic's system often relies on the
LLM's superior reasoning to parse the error and determine the next step, but a
structured JSON output is still the most reliable method for deterministic recovery.

3. Google Function Calling (Gemini API): Google's approach leverages the
OpenAPI 3.0 Schema specification for defining both function inputs and outputs.
This tight integration with a mature API standard naturally encourages the definition
of response schemas that include error objects. By defining a specific response
schema for the tool, the developer can enforce the structured error contract, making
the error handling more predictable and less reliant on the LLM's ability to parse
unstructured text.

4. OpenAPI/JSON Schema: These standards are the bedrock. JSON Schema is used
to define the exact structure of the error payload, ensuring type safety and
predictability. OpenAPI (formerly Swagger) allows the tool developer to document
the possible error responses (e.g., a 404 response with a specific error body) directly
in the tool's specification. This documentation is then ingested by the agent
framework, providing the LLM with a complete "contract" that includes failure modes
before the tool is even called.

12

Byrddynasty | Agentic Al Strategy

5. Agent Skills Standard (Conceptual): Emerging standards for agent skills often
propose a dedicated, standardized Error Object that is mandatory for all tool

implementations. This object typically includes fields for error_type (e.g.,
ToolExecutionError , AuthenticationError), severity (e.g., CRITICAL , WARNING), and a
standardized set of recovery instructions that map directly to the agent's internal
state machine (e.g., RETRY_IMMEDIATELY , ABORT_PLAN , REQUEST_USER_INPUT). This
standardization is the future of agent tool interoperability.

Practical Implementation Tool engineers face key design decisions when
implementing robust error handling, primarily revolving around the Usability-
Flexibility Tradeoff.

Design
Decision

Error
Granularity

Retry
Guidance

Error
Translation

Usability (Agent
Experience)

Coarse-grained, high-
level codes (e.g.,
INVALID_INPUT) are
easier for the LLM to map
to a recovery plan.

Explicit boolean
is_retryable and
integer
suggested_delay_seconds
provide deterministic
instructions.

A strict Semantic
Wrapper that translates
all native errors into a
single, standardized
agent-friendly format.

Flexibility (Tool
Developer)

Fine-grained, specific
codes (e.g.,
INVALID_TICKER_FORMAT ,
TICKER_NOT_FOUND)
provide more diagnostic
detail.

Relying on the LLM to
infer retryability from
the error message
offers maximum
flexibility for novel
errors.

Returning the raw,
native API error (e.g., a
full stack trace or a
vendor-specific JSON
object).

13

Tradeoff Analysis

Best Practice: Use
coarse-grained codes
for the LLM's primary
decision-making, but
include fine-grained
codes in the message
or details for
advanced debugging or

logging.

Best Practice: Always
provide explicit,
deterministic guidance.
LLMs are poor at
inferring retry logic
reliably. Use the
agent_action_required
field for non-retryable
errors.

Best Practice: The
wrapper is mandatory.
Raw errors are noise to
the LLM and introduce
non-determinism. The

Byrddynasty | Agentic Al Strategy

Design Usability (Agent Flexibility (Tool

. . Tradeoff Analysis
Decision Experience) Developer)

wrapper ensures a
consistent error
contract across all
tools.

Decision Framework: The Agent Recovery Loop

1. Detection: The tool output is checked for the presence of the standardized error
object.

2. Classification: The error.code is used to classify the failure as Transient,
Permanent, or Agent-Induced.

3. Action Determination:
o If Transient and is_retryable is true: Initiate an exponential backoff retry.

o If Permanent or is_retryable is false: Consult agent_action_required .

4. Recovery Execution:
o If REPHRASE_QUERY : The agent uses the error.message to refine the input
parameters and re-call the tool.

o If AUTHENTICATE_USER : The agent stops the current plan and initiates a user-facing
authentication flow.

o If ABORT_PLAN : The agent reports the failure to the user and terminates the
current task.

This structured guidance ensures that the LLM's role is simplified to interpreting a
predictable error contract, rather than performing complex, non-deterministic error
analysis. The tradeoff favors usability and reliability over the tool developer's
flexibility to return arbitrary error formats.

Common Pitfalls * Pitfall: Returning Raw API Errors. Exposing the LLM to the
native, vendor-specific error messages (e.g., a raw AWS SDK exception or a database
connection error). * Mitigation: Implement a mandatory Semantic Wrapper Pattern

14

Byrddynasty | Agentic Al Strategy

to translate all underlying errors into a single, standardized, agent-interpretable JSON
error contract with clear, high-level error codes.

e Pitfall: Ambiguous Error Codes. Using generic codes like FAILURE or
ERROR_OCCURRED that do not convey the nature of the failure (e.g., is it a transient
network issue or a permanent authentication problem?).

- Mitigation: Define a comprehensive set of standardized error codes that
explicitly categorize the failure type (e.g., TRANSIENT_RATE_LIMIT ,
PERMANENT_AUTH_FAILURE , INVALID_INPUT_SCHEMA).

e Pitfall: Missing Retry Guidance. Failing to include explicit is_retryable and
agent_action_required fields in the error response.

o Mitigation: Make the retry_guidance object mandatory in the error schema.
Force the tool developer to explicitly state whether the error is transient and what
the agent's next step should be (e.g., REPHRASE_QUERY , ABORT_PLAN).

e Pitfall: Inconsistent Error Structure. Different tools returning errors in different
formats (e.g., one uses a top-level error key, another uses a status_code field).

- Mitigation: Enforce a single, global JSON Schema for all tool error responses
across the entire agent platform, ensuring a uniform contract for the LLM.

e Pitfall: Over-reliance on LLM Reasoning. Assuming the LLM can infer complex
recovery logic from a detailed natural language message alone.

- Mitigation: Prioritize deterministic, machine-readable fields (codes,
booleans, enums) over verbose natural language descriptions for core decision-
making. The natural language message should only serve as supplementary
context.

Real-World Use Cases Robust error handling is critical in scenarios where tool
execution is complex, involves external systems, or is part of a high-value transaction.

1. Financial Trading Agent: A tool to execute a stock trade fails.

- Failure Mode (Poor Design): The tool returns a raw HTTP 503 error with a
generic message. The agent, unable to classify the error, retries immediately,
exacerbating the issue (e.g., hitting a rate limit or causing a duplicate trade).

15

Byrddynasty | Agentic Al Strategy

- Success Story (Robust Design): The tool returns a structured error with code:
TRANSIENT_RATE_LIMIT , is_retryable: true , and suggested_delay_seconds: 60 . The
agent automatically implements a 60-second exponential backoff before retrying,
ensuring the trade is eventually executed without manual intervention or duplicate
orders.

2. E-commerce Order Fulfillment Agent: An agent uses a tool to check inventory for
a product.

- Failure Mode (Poor Design): The tool returns a Python exception string
because the product ID was malformed. The agent, confused by the stack trace,
hallucinates a success message or asks the user an irrelevant question.

> Success Story (Robust Design): The tool returns code: INVALID_INPUT_SCHEMA ,
is_retryable: false , and agent_action_required: REPHRASE_QUERY . The agent uses
the error message to identify the malformed ID, corrects the input based on its
memory, and successfully re-calls the tool.

3. Customer Support Agent (CRM Integration): An agent attempts to log a new
case in a CRM system.

> Failure Mode (Poor Design): The tool returns a generic "Access Denied" error.
The agent cannot distinguish between a temporary token expiration and a
permanent permission issue. It repeatedly tries the same failed action.

> Success Story (Robust Design): The tool returns code: PERMANENT_AUTH_FAILURE ,
is_retryable: false , and agent_action_required: AUTHENTICATE_USER . The agent
immediately halts the case logging, notifies the user or system administrator of
the authentication requirement, and initiates the token refresh flow, preventing
resource waste.

Sub-skill 8.1c: Function Calling Protocols - OpenAI Function
Calling, Anthropic Tool Use, Google Function Calling, Protocol
Differences and Best Practices

Conceptual Foundation The foundation of function calling protocols lies in the
convergence of three core software engineering concepts: API Design, Semantic
Interoperability, and Structured Data Generation. At its heart, function calling is a
specialized form of Remote Procedure Call (RPC), where the LLM acts as the client
that generates the call signature, and the host application acts as the server that

16

Byrddynasty | Agentic Al Strategy

executes the procedure [1]. The LLM's ability to map natural language intent to a
formal, executable API call is the key innovation.

Semantic Interoperability is achieved through the use of JISON Schema to define
the tool's interface. This schema serves as a formal contract that is machine-readable
for the host application (for validation and execution) and human-readable for the LLM
(via its training data and system prompt context) [2]. This shared, structured definition
allows the LLM to understand the meaning (semantics) of the tool and its parameters,
enabling reliable translation from user intent to code execution. This is a critical step
toward a true semantic layer for agentic systems, where capabilities are described not
just syntactically, but by their function and purpose [6].

The theoretical foundation is rooted in the idea of Tool-Augmented Language Models
(TALMs), which overcome the inherent limitations of LLMs (e.g., lack of real-time data,
inability to perform complex calculations) by granting them access to external,
deterministic systems [9]. The protocol itself manages the control flow between the
non-deterministic LLM (the planner) and the deterministic external environment (the
executor). The core loop involves the LLM generating a tool call, the host executing it,
and the result being returned to the LLM as a new context, allowing for iterative, multi-
step reasoning and action [3].

Technical Deep Dive Function calling protocols operate on a fundamental request-
response loop that integrates the non-deterministic LLM with the deterministic
execution environment. The core mechanism is the LLM's ability to generate a
structured, machine-readable output instead of a natural language response when it
determines an external action is necessary [1].

The protocol begins with the host application sending the LLM a list of available tools,
each defined by a JISON Schema. This schema is critical, as it formally specifies the
tool's name, a natural language description, and the structure of its input parameters.
For example, the OpenAl protocol uses a tools array in the API request, where each
tool object contains a function object with name , description, and a parameters object
that is a valid JSON Schema [2].

If the LLM decides to use a tool, it halts its natural language generation and returns a
structured response containing a tool_calls array. Each call object specifies the
function name and the arguments as a JSON string. The host application then parses
this JSON, validates it against the original schema, and executes the corresponding

17

Byrddynasty | Agentic Al Strategy

function. This is where the protocol difference emerges: OpenAl's protocol is
primarily a stateless, single-turn request-response for the tool call itself, relying on
the host to manage the execution and re-insertion of the result into the next turn of the
conversation [3].

In contrast, protocols like Anthropic's MCP are designed as a stateful, multi-primitive
client-server model. MCP uses JSON-RPC 2.0 over various transports, defining
explicit methods like tools/list and tools/call . This allows for dynamic tool discovery
and a more robust, standardized way to handle context and lifecycle management,
including real-time updates via notifications [5]. Google's A2A further abstracts this into
an Agent-to-Agent communication layer, where the protocol manages the network and
delegation between independent agents, making the remote agent appear as a local
tool to the calling agent [4]. The common thread is the reliance on a formal, structured
data contract (JSON Schema or a similar structured format) to bridge the gap between
natural language intent and code execution.

Framework and Standards Evidence The major LLM providers have adopted distinct,
yet related, protocols for tool use, all leveraging structured data for reliability:

1. OpenAl Function Calling (JSON Schema): This is the most widely adopted
pattern. Tools are defined using a JSON object that strictly adheres to the JISON
Schema specification. The model's response contains a tool_calls array, each
element specifying the function name and a JSON object of arguments . The model is
trained to output this JSON structure reliably. json { "type": "function", "name":
"get_weather", "parameters": { "type": "object", "properties": { "location": { "type":
"string" } }, "required": ["location"] } }

2. Anthropic Tool Use (Model Context Protocol - MCP): Anthropic's approach is
more protocol-centric, built on a client-server architecture using JSON-RPC over
various transports [5]. MCP defines explicit primitives like Tools , Resources , and
Prompts , each with methods for discovery (tools/1list) and execution (tools/call).
This is @ more comprehensive standard for context exchange, not just function
invocation.

3. Google Function Calling (Agent-to-Agent - A2A): Google's focus is on agent
interoperability rather than just model-to-tool. A2A defines a lightweight, open
protocol for agents to Discover, Delegate, and Coordinate tasks [4]. While the
underlying tool calls may use JSON Schema, A2A's protocol is higher-level, defining

18

Byrddynasty | Agentic Al Strategy

how an A2AServer exposes an agent's capabilities and how a RemoteA2aAgent client
consumes them over a network, abstracting the network layer.

4. OpenAPI Specification: Many tool frameworks, including those built on OpenAl's
API, use the OpenAPI (Swagger) specification to automatically generate the
required JSON Schema for tool definitions [10]. This allows developers to define their
API once and use it for both traditional REST clients and LLM agents, promoting
consistency and reusability.

5. Agent Skills Standard: Emerging standards, often based on a combination of
OpenAPI and JSON Schema, aim to create a universal format for describing agent
capabilities, allowing for seamless tool sharing and model agnosticism, addressing
the MxN problem inherent in provider-specific protocols [3].

Practical Implementation Tool engineers face a core usability-flexibility tradeoff
when designing tools for agents. Highly specific, granular tools (high flexibility) require
complex, multi-step reasoning from the agent, increasing failure points. Broad, high-
level tools (high usability) simplify the agent's task but may limit the agent's ability to
handle nuanced requests.

Decision Framework: Granularity vs. Orchestration

Decision
Point

Granular Tools (High Flexibility) High-Level Tools (High Usability)

Tool get_user_id(email) , get_customer_summary(email)

Example fetch_order_history(id)

Agent Must chain multiple calls and manage Single call, tool handles internal

Task intermediate state. orchestration.

Best Use for complex, multi-step workflows Use for common, atomic business

Practice where the agent needs to make processes (e.g., "book flight," "check
decisions between steps (e.g., inventory").

debugging, planning).

Implementation Best Practices:

e Semantic Naming: Tool names and parameter names must be clear, descriptive,
and semantically unambiguous (e.g., create_user_account is better than post_data).

19

Byrddynasty | Agentic Al Strategy

e Schema Simplicity: Keep the JSON Schema as simple as possible. Avoid overly
deep nesting or complex conditional logic unless absolutely necessary. The LLM
performs best with flat, well-defined schemas [2].

e Input/Output Symmetry: Ensure the tool's description clearly explains what the
tool returns (the output schema), as this is crucial for the LLM's subsequent
reasoning step.

e Guardrails and Timeouts: Implement strict execution guardrails on the host
application side, including rate limits and timeouts, to prevent runaway tool calls or
accidental denial-of-service against external APIs [7].

Common Pitfalls * Pitfall 1: Ambiguous Tool Descriptions (Semantic Drift):
Providing vague or overlapping descriptions for tool names and parameters. Mitigation:
Ensure every tool and parameter has a clear, concise, and unique natural language
description. Use examples in the description to clarify intent and expected input/output
formats. * Pitfall 2: Schema Mismatch and Validation Failure: The LLM generates a
JSON object that does not strictly conform to the provided JSON Schema (e.g., wrong
data type, missing required field). Mitigation: Implement strict, server-side JSON
Schema validation before tool execution. Use additionalProperties: false and required
fields aggressively in the schema to enforce structure, as seen in the OpenAl example
[2]. * Pitfall 3: Tool Call Failures and Lack of Error Handling: The external API call
fails, and the agent does not receive a meaningful error message or recovery path.
Mitigation: Tools must return structured, semantic error messages (e.g., a JSON object
with error_code and user_message) to the LLM. The agent's system prompt should
include instructions on how to interpret and respond to these errors (e.g., retry, inform
the user, or suggest an alternative tool) [7]. * Pitfall 4: Over-tooling and Context
Bloat: Providing the LLM with too many tools, which increases the prompt size, token
usage, latency, and the likelihood of the LLM choosing the wrong tool. Mitigation:
Implement tool routing or tool retrieval (RAG for tools) to dynamically select only
the most relevant subset of tools for the current user query and context [8]. * Pitfall 5:
State Management Confusion: Designing stateless tools for a stateful conversation,
leading to the agent forgetting context or requiring redundant inputs. Mitigation: Clearly
define which tools are stateless (e.g., get_weather) and which require session context
(e.g., add_item_to_cart). For stateful operations, ensure the tool's output or the agent's
memory explicitly manages and updates the session state.

20

Byrddynasty | Agentic Al Strategy

Real-World Use Cases The quality of tool engineering is critical in real-world agentic
systems, particularly in domains requiring high accuracy and security:

1. Customer Service Automation (Success Story): A well-engineered agent uses a
single, high-level tool like get_order_status(order_id) with a clear schema. Success:
The agent reliably extracts the order_id from natural language, calls the tool, and
provides a precise, real-time status update, leading to high customer satisfaction and
low operational cost.

2. Financial Trading Agent (Failure Mode): A poorly designed agent is given two
similar tools: get_stock_price(ticker) and get_historical_data(ticker) . Failure:
When asked "What is the price of AAPL?", the LLM sometimes hallucinates a call to
get_historical_data with incorrect date parameters, or calls both unnecessarily,
wasting tokens and time. This semantic ambiguity leads to a reasoning loop
failure and potentially costly delays in a time-sensitive environment [7].

3. Code Generation and Debugging (Success Story): Agents like those in the
Agent Development Kit (ADK) use the A2A protocol to delegate tasks. A "Code
Planner Agent" delegates the execution of a test suite to a separate "Test Runner
Agent" via A2A. Success: This separation of concerns allows the Code Planner to
focus on reasoning, while the Test Runner handles the complex, environment-specific
execution, ensuring a robust and scalable development workflow [4].

4. Internal Knowledge Retrieval (Failure Mode): An agent is given a
search_database(query) tool. Failure: The LLM, when asked a question it knows the
answer to internally, still calls the tool, leading to unnecessary tool invocation and
increased latency. This is a common failure mode that highlights the need for the
LLM to be trained to only call the tool when its internal knowledge is insufficient [8].

Sub-skill 8.1: Tool Engineering as Interface Desigh - Semantic
Usability and Discoverability

Conceptual Foundation Tool engineering for autonomous agents is fundamentally an
exercise in interface design, shifting the traditional paradigm from Human-Computer
Interaction (HCI) to Agent-Tool Interaction (ATI). The tool's definition—its name,
description, and parameter schema—serves as the agent's User Interface (UI), and its
quality directly determines the agent's ability to discover, understand, and correctly
utilize the available capabilities. The core concepts are drawn from established software
engineering disciplines, particularly API design (e.g., REST, RPC), where principles like

21

Byrddynasty | Agentic Al Strategy

clarity, consistency, and idempotency are paramount. However, these principles are
overlaid with concepts from semantics and natural language processing, as the LLM
must interpret the interface through linguistic reasoning rather than visual or manual
interaction. This necessitates a focus on the linguistic and structural properties of the
interface, making the tool definition a form of executable documentation.

The theoretical foundation for this discipline rests on the concept of affordance,
adapted from ecological psychology. In the context of ATI, affordance refers to the
perceived and actual properties of the tool that determine how an agent can use it to
achieve a goal. A well-designed tool schema affords correct usage by providing clear
semantic cues. Equally critical is the concept of semantic interoperability, which
ensures that the agent's internal reasoning engine can reliably map its high-level goals
and contextual state to the tool's function signature and required parameters. This
mapping process is often guided by emerging theoretical frameworks, such as the
Theory of Agents as Tool-Use Decision-Makers [1], which posits that optimal agent
behavior emerges when tool invocation aligns precisely with the agent's knowledge
boundary, ensuring tools are only called to acquire missing, necessary information or
execute a required action.

The ultimate goal of tool engineering is to maximize semantic usability, which is the
measure of how easily and reliably an LLM can infer a tool's purpose, preconditions,
postconditions, and side effects solely from its linguistic and structural definition. This
requires applying principles like the Principle of Least Astonishment to the tool's
behavior, ensuring that the tool's function name and description accurately predict its
outcome. The tool definition becomes the Agent Experience (AX), and its design must
prioritize the agent's reasoning process. For instance, a tool that is named
get_user_data but also triggers a billing event violates semantic usability, as the side
effect is not clearly afforded by the name. Therefore, effective tool design requires a
holistic view of the tool as a linguistic, structural, and behavioral contract with the
autonomous agent.

Technical Deep Dive The technical core of systematic tool engineering is the use of
JSON Schema as the lingua franca for defining the tool's interface. This schema is a
declarative contract that specifies the tool's name, a detailed description, and the
structure of its input parameters. The LLM is not merely generating text; it is
performing a structured prediction task, classifying the user's intent and mapping it to a
function signature defined by the schema. The schema's descriptive fields, such as

22

Byrddynasty | Agentic Al Strategy

description , are critical for the LLM's reasoning, while the structural fields, such as
type , properties , required, enum, and pattern, enforce the technical constraints of
the underlying API.

A typical tool invocation follows a specific protocol: 1) The agent receives a user
prompt. 2) The LLM's reasoning engine, guided by the tool schemas provided in the
context, decides whether to respond directly or call a tool. 3) If a tool is called, the LLM
outputs a structured JSON object conforming to the schema, which is then intercepted
by the agent runtime. 4) The runtime executes the corresponding function with the
provided arguments. 5) The function's result (often a JSON or text string) is returned to
the LLM as a tool observation or function result. 6) The LLM uses this observation to
formulate a final, informed response to the user. This request-response cycle is the
fundamental API pattern for agent-tool interaction.

Schema Example (Conceptual):

"type": "function",
"function": {
"name": "search_product_catalog",
"description": "Searches the e-commerce product catalog for items matching a query.
"parameters": {
"type": "object",
"properties": {
"query": {
"type": "string",
"description": "The search term, e.g., 'red running shoes'."
})
"max_price": {
"type": "number",
"description": "The maximum price in USD for filtering results."
}’
"category": {
"type": "string",
"enum": ["electronics", "apparel", "home_goods"],
"description": "Optional category filter."
ks
}’

"required": ["query"]

23

Byrddynasty | Agentic Al Strategy

Implementation considerations include namespacing and versioning. As tool libraries
grow, namespacing (e.g., finance.get_stock_price VS. hr.get_employee_salary) is crucial
for preventing collisions and improving LLM clarity. Versioning is managed by including
version metadata in the schema or by using versioned tool names, allowing the agent to
reason about tool deprecation and compatibility. The use of semantic tags within the
schema's description (e.g., mentioning side_effects: none oOr latency: high) further
enriches the interface, providing the agent with non-functional requirements necessary
for sophisticated planning and execution. The technical deep dive reveals that the tool
interface is a highly constrained, structured API designed not for human developers, but
for the LLM's internal reasoning engine.

Framework and Standards Evidence The systematic approach to tool engineering is
validated by its adoption across major LLM frameworks, each implementing a structured
protocol for tool definition and invocation:

1. OpenAl Function Calling (Tools): This is the foundational standard, utilizing
JSON Schema to define tool signatures. The model is fine-tuned to output a
structured JSON object containing the function name and arguments, rather than
generating a natural language response.

o Example: A get_weather tool is defined with a type: object parameter schema,
requiring a location (string) and an optional unit (enum: celsius, fahrenheit).
The model's output is a guaranteed-valid JSON object like {"name": "get_weather",

"arguments": {"location": "Boston, MA", "unit": "celsius"}} .

2. Anthropic Tool Use (Model Context Protocol - MCP): Anthropic's approach,
often formalized under the Model Context Protocol (MCP) [2], uses an XML-like tag
structure within the prompt to define tools and to receive tool calls. While the
underlying definition is still structured (often implicitly or explicitly using a schema),
the interaction is mediated by specific XML tags (<tool_use> , <tool_result>) that the
model is trained to generate and interpret.

o Example: The model might generate <tool_use> <tool_name>search_database</
tool_name> <parameters> <query>latest stock price for G00G</query> </parameters> </

tool_use> . This structured output is then parsed by the system.

3. Google Function Calling (Gemini API): Google's implementation is highly similar
to OpenAl's, also relying on JSON Schema for tool definition. A key feature is the
ability to define multiple functions and have the model select and call them in parallel

24

Byrddynasty | Agentic Al Strategy

or sequentially within a single turn, demonstrating a focus on efficiency and complex
task decomposition.

o Example: The model can respond with a list of function calls, enabling it to
simultaneously call get_user_profile and fetch_recent_orders if both are
necessary for the user's request.

4. OpenAPI Specification (OAS): The OpenAPI Specification (formerly Swagger) is
the industry standard for defining RESTful APIs. It is frequently used as the source-
of-truth for generating LLM tool schemas. Tools can be automatically generated by
parsing an existing OAS document, mapping API endpoints to LLM functions.

o Example: An OAS definition for a /products/{id} GET endpoint is automatically
translated into an LLM tool named get_product_details with a required id
parameter.

5. Agent Skills Standard: This is an emerging, open format designed to package
domain-specific capabilities for agents. It goes beyond simple function signatures by
including instructions, resources, and optional scripts in a standardized folder
structure. This standard emphasizes discoverability by requiring rich metadata and
clear usage instructions, making it easier for different agent frameworks to share and
utilize capabilities.

o Example: An Agent Skill might define a data_analysis capability, including a
Python script, a dependency list, and a detailed Markdown description of when
and how to invoke the analysis.

Practical Implementation Effective tool engineering requires making key design
decisions that balance the competing demands of usability for the agent (AX) and
flexibility for the developer (DX).

Key Design Decisions for Tool Engineers:

1. Granularity of Function: Decide between Coarse-Grained (fewer, complex tools
that map to high-level user intents, e.g., book_flight) and Fine-Grained (many
simple tools that map to low-level API calls, e.g., search_flights , select_seat,
confirm_booking). Coarse-grained tools reduce the number of turns and reasoning
steps for the agent but limit flexibility.

2. State Management: Determine if the tool should be Stateless (all necessary
context passed in parameters) or Stateful (relying on a session ID or previous

25

Byrddynasty | Agentic Al Strategy

calls). Stateless tools are easier for the LLM to reason about, as they are idempotent
and self-contained. Stateful tools are necessary for complex transactions but require
the agent to reliably manage and pass session tokens.

3. Input/Output Structure: Choose between simple primitive types and complex
nested objects in the schema. While simple types are easier for the LLM to generate,
complex, nested objects (using all0f , one0f , and detailed object properties)
provide superior semantic guidance and enforce stricter data contracts.

Usability-Flexibility Tradeoffs:

Design Usability (AX) for Flexibility (DX) for .

. Tradeoff Analysis
Choice Agent Developer
Coarse- High: Fewer calls, Low: Harder to reuse Prioritize AX: Agents
Grained simpler planning, less components, complex struggle with multi-step
Tools token usage. internal logic. planning; abstracting

complexity into a single
tool is often beneficial.

Strict JSON High: Clear Low: Requires more Prioritize AX:

Schema constraints, reliable effort to define and Reliability is paramount.
argument generation, maintain complex The upfront cost of a
less hallucination. schemas. strict schema is offset by

reduced runtime errors.

Rich High: Excellent Low: Requires Prioritize AX: The

Descriptions discoverability, disciplined, verbose description is the agent's
accurate intent documentation. UI. Never compromise
mapping. on descriptive quality.

Best Practices:

e Semantic Naming: Use verb-noun pairs that clearly indicate the action and object

(e.g., create_user_account , not user_op).

e Defensive Design: Implement robust input validation within the tool's execution
code, as the LLM may still generate syntactically correct but semantically invalid
arguments (e.g., a negative quantity).

26

Byrddynasty | Agentic Al Strategy

e Asynchronous Patterns: For long-running operations, design the tool to return an
immediate status (e.g., job_id) and provide a separate check_job_status tool,
preventing the agent from blocking the conversation.

Common Pitfalls * Pitfall: Vague or Ambiguous Descriptions. Using generic
names (e.g., process_data) or sparse descriptions that fail to convey the tool's exact
function, preconditions, and side effects. * Mitigation: Enforce a strict documentation
standard. Descriptions must be rich, including a clear "when to use" clause and
explicit mention of any external side effects (e.g., "Sends an email to the user,
consuming a credit").

e Pitfall: Overly Granular or "Chatty" Tools. Creating many small tools that require
excessive sequential calls (e.g., separate tools for get_user_id, get_user_email ,

send_email).

o Mitigation: Design tools around user intent or atomic business actions (e.g.,
a single send_personalized_email(user_name, subject, body) tool). Prioritize coarse-
grained tools that encapsulate complex logic.

e Pitfall: Schema Mismatch and Type Ambiguity. Using generic types like string
for parameters that should be constrained (e.g., a date, an enum, or a specific ID
format).

o Mitigation: Leverage the full power of JSON Schema: use format (e.g.,
date-time , email), enum, pattern (regex), and minimum / maximum constraints to
provide the LLM with precise type information.

e Pitfall: Non-Idempotent Tools Without Warning. Designing tools that cause
irreversible state changes (e.g., delete_record) but failing to warn the agent or
requiring explicit confirmation.

- Mitigation: Clearly mark non-idempotent tools in the description. For critical
actions, implement a two-step confirmation pattern where the tool first
returns a confirmation prompt, and the agent must explicitly call a second tool to
execute.

27

Byrddynasty | Agentic Al Strategy

e Pitfall: Poor Error Handling and Opaque Responses. Tools returning only
generic HTTP status codes or unstructured text error messages.

o Mitigation: Tools must return structured, semantic error objects (e.g., JSON with
error_code , error_type , and a human_readable_message) that the agent can parse
and reason about for recovery or user communication.

e Pitfall: Context Overload in Tool Responses. Returning massive, irrelevant data
structures (e.g., a full database dump) when only a few fields are needed.

- Mitigation: Implement projection or field selection in the tool's API (e.g., a
fields parameter) to allow the agent to request only the necessary data,
minimizing context window usage and improving focus.

Real-World Use Cases 1. Financial Transaction Processing (Criticality: High
Reliability) * Success Story: A well-engineered execute_wire_transfer tool with a
strict JSON Schema requiring recipient_account_number (pattern-validated string),
amount (Minimum/maximum constraints), and a mandatory confirmation_code . The rich
description explicitly states the irreversible nature of the action. This high semantic
usability ensures the agent only attempts the transfer when all data is present and
validated, leading to a high success rate and preventing financial loss. * Failure Mode:
A poorly designed transfer_funds tool that accepts a single, unstructured details
string. The agent might hallucinate the argument format or omit a critical field like the
currency, leading to failed transactions, security risks, or incorrect debits that require
costly human intervention to reverse.

2. Enterprise Data Retrieval (Criticality: Discoverability and Precision) *
Success Story: A suite of tools defined using the Agent Skills standard, where each
tool (e.g., query_crm, fetch_erp_inventory) has a detailed description and a parameter
schema that supports complex filtering (e.g., filter_by object). The agent can
semantically search the tool library, find the most relevant tool, and construct a precise
guery, minimizing the data returned and improving reasoning efficiency. * Failure
Mode: A single, monolithic access_database tool with a vague description. The agent
struggles to determine the correct query language or data source, resulting in the tool
being called with irrelevant or incorrect parameters, leading to context overload from
massive, unfiltered data dumps.

3. Software Deployment Automation (Criticality: Idempotency and State
Management) * Success Story: A toolset where deployment actions are designed to

28

Byrddynasty | Agentic Al Strategy

be idempotent (e.g., ensure_service_running(service_name)). The tool's description
clearly states that calling it multiple times with the same parameters has the same
effect as calling it once. This allows the agent to safely retry steps after a failure without
worrying about creating duplicate resources. * Failure Mode: A non-idempotent
create_server tool. If the agent's connection drops after the server is created but before
the success message is received, the agent might retry the call, resulting in the creation
of duplicate, unmanaged infrastructure and incurring unnecessary cloud costs. The lack
of clear affordance for idempotency leads to resource sprawl.

Sub-Skill 8.2: Dynamic Tool Discovery and
Composition

Sub-skill 8.2a: Tool Registries and Catalogs - Searchable tool
catalogs, indexing by capability and domain, metadata standards,
versioning

Conceptual Foundation The foundation of agent tool registries is rooted in established
software engineering paradigms, primarily Service-Oriented Architecture (SOA) and
API Management. In SOA, a service registry (or repository) is a central component
that stores metadata about available services, enabling dynamic discovery and binding.
The agent tool registry is the modern, LLM-centric evolution of this concept, where the
"service" is an external function or API endpoint, and the "consumer" is an autonomous
agent. This transition requires shifting from machine-readable WSDL/UDDI to human-
readable, yet structured, descriptions like JSON Schema, optimized for the LLM's
reasoning process.

A critical theoretical underpinning is Semantic Web principles, specifically the concept
of metadata standardization. For an agent to intelligently select a tool, it must
understand the tool's intent and effect, not just its signature. This necessitates rich,
standardized metadata that goes beyond simple input/output types to include domain,
capability tags, pre-conditions, and post-conditions. The registry acts as a semantic
layer, translating raw API specifications into a format optimized for LLM reasoning and
retrieval. This is fundamentally a problem of Information Retrieval, where the agent's

29

Byrddynasty | Agentic Al Strategy

natural language query must be mapped to the most relevant tool definition in the
catalog, often using vector embeddings for semantic search.

Furthermore, the registry addresses the core software engineering challenge of
Dependency Management and Version Control. Just as package managers like npm
or Maven manage library dependencies, a tool registry manages the lifecycle of agent
capabilities. It ensures that agents can rely on a stable, versioned interface, allowing for
safe updates and rollbacks. The concept of Interface Segregation is also vital; the
registry should present a minimal, agent-optimized view of the tool (the function
signature and description) while abstracting away the complex implementation details
and execution environment from the LLM's decision-making process.

Finally, the registry embodies the principle of Loose Coupling. By centralizing tool
definitions, the registry allows tool developers to update implementations without
affecting the agents, and allows agents to be updated without needing to re-prompt for
every tool change. This decoupling is essential for building scalable, resilient agent
ecosystems where tools can be added, removed, or modified dynamically, ensuring the
overall system remains robust and adaptable to new capabilities.

Technical Deep Dive A tool registry is architecturally a specialized metadata repository
optimized for low-latency semantic search and version control. The core data structure
for a tool entry is typically a JSON object that wraps the standard API definition with
agent-specific metadata. At a minimum, this object includes: a unique tool_id, a
version string (e.g., SemVer), a rich natural language description , and the JSON
Schema for the function's input parameters. The registry's database is often a hybrid
system, using a relational or NoSQL store for structured metadata and a Vector
Database (e.g., Pinecone, Milvus) to store embeddings of the tool descriptions.

The registry protocol involves three key operations: Registration, Discovery, and
Retrieval. During Registration, a tool developer submits an OpenAPI specification or a
custom tool definition. The registry parses this, extracts the function signature and
description, generates a vector embedding of the description, and stores all
components. The Discovery phase is where the agent queries the registry with a natural
language intent. This query is embedded and used to perform a k-Nearest Neighbors
(k-NN) search in the vector database, returning the top kK most semantically relevant
tool IDs. Finally, the Retrieval phase fetches the full, structured JSON Schema for the
selected tools, which is then passed to the LLM for parameter generation.

30

Byrddynasty | Agentic Al Strategy

Schema Example (Simplified Registry Entry):

"tool_id": "com.corp.finance.get_balance",
"version": "2.1.0",
"domain": "Finance",
"capability_tags": ["read", "account_data", "realtime"],
"description": "Retrieves the current, real-time balance for a specified customer accou
"function_schema": {
"name": "get_account_balance",

"parameters": {
"type": "object",
"properties": {
"customer_id": {"type": "string", "description": "The unique identifier for the c

s

"required": ["customer_id"]

Implementation considerations include Indexing by Capability and Domain. Tools
are not just indexed by their description vector but also by structured fields like domain
and capability_tags . This allows for a two-stage filtering process: first, a structured
filter based on the agent's security scope or domain, followed by a semantic search on
the remaining subset. This combination ensures both security and relevance.
Furthermore, the registry must manage versioning by maintaining immutable records
for every tool version and providing a clear API for agents to request the latest stable
version or a specific, pinned version. This prevents the "brittle tool" problem where a
change in one tool breaks multiple downstream agents.

Framework and Standards Evidence The concept of a tool registry is evidenced
across major LLM frameworks, all converging on structured data formats for tool
definition:

1. OpenAl Function Calling: OpenAl pioneered the use of a simplified JSON Schema
for defining functions. The agent is provided with a list of tools , each containing a
type (always function), @ name , @ human-readable description, and a parameters
object which is a standard JSON Schema object defining the required and optional
inputs. This list acts as a micro-catalog for the current conversation, demonstrating
the core principle of structured capability definition.

31

Byrddynasty | Agentic Al Strategy

2. Google Gemini Function Calling: Google's approach is highly similar, also
leveraging JSON Schema to define functions. A key difference is the strong emphasis
on using the full OpenAPI Specification for more complex, RESTful APIs. By
accepting an OpenAPI document, Google's framework effectively uses the API
specification itself as the tool registry entry, allowing for the direct ingestion of
existing API documentation into the agent ecosystem.

3. Anthropic Tool Use: Anthropic's Claude models use a tools block in the system
prompt, which also relies on structured definitions. While the underlying schema is
similar to JSON Schema, Anthropic places a significant emphasis on the quality of the
natural language description and encourages the use of input_examples to provide
the model with concrete, high-quality examples of how the tool should be used. This
highlights the importance of semantic richness in the registry's metadata for agent
performance.

4. OpenAPI Specification (OAS): OAS is the de facto standard for defining RESTful
APIs, and it serves as the foundational metadata standard for agent tool registries.
An OAS document provides the tool's nhame, description, endpoints, request/response
schemas, and versioning information. A tool registry often acts as a wrapper around
a collection of OAS documents, extracting the function-calling metadata (path,
method, parameters) and translating it into the LLM-specific schema format.

5. Agent Skills Standard (Conceptual): Emerging standards, often referred to as
Agent Skills or Model Context Protocol (MCP), are pushing for a more comprehensive
registry standard. These standards aim to include richer metadata like domain ,
cost_model , security_scope , and pre_conditions within the tool definition, moving
beyond simple function signatures to define the tool's full operational context,
thereby creating a truly searchable and filterable catalog.

Practical Implementation Key design decisions for a tool engineer center on the
Usability-Flexibility Tradeoff and the choice of versioning strategy. The core decision
is how much complexity to expose to the LLM. A high-usability approach involves
simplifying the tool schema (e.g., using only primitive types) and providing verbose,
high-quality natural language descriptions, making it easy for the LLM to use but
limiting the tool's functional flexibility. A high-flexibility approach exposes complex,
nested JSON Schemas and allows for multiple endpoints, which is powerful but
increases the cognitive load and failure rate for the LLM.

32

Byrddynasty | Agentic Al Strategy

Decision Framework: High Usability (Agent- High Flexibility (Developer-

Usability vs. Flexibility Centric) Centric)

Tool Schema Simplified, flat JSON Full OpenAPI/JSON Schema
Schema with minimal with complex types and
nesting. references.

Description Long, detailed, use-case- Concise, technical description of
focused natural language. API contract.

Registry Indexing Semantic search on Exact-match search on function
description and capability name and path.
tags.

Best Practice Use for general-purpose Use for specialized agents and
agents and high-volume complex enterprise APIs.
tasks.

For versioning, the engineer must choose between Semantic Versioning (SemVer)
and Behavioral Versioning. SemVer (MAJOR.MINOR.PATCH) is standard for API contracts,
ensuring backward compatibility. However, an LLM's behavior can change even if the API
contract does not (e.g., a change in the tool's underlying data source). Therefore, best
practice is to implement Behavioral Versioning within the registry's metadata,
tracking not just the API version but also the version of the tool definition and the
underlying data model, ensuring that the agent is aware of any change that might affect
its reasoning, even if the function signature remains constant. The registry must
enforce strict immutability for all registered versions.

Common Pitfalls * Tool Collision and Ambiguity: When two or more tools have
similar names or descriptions (e.g., get_weather and check_forecast), the LLM struggles
to choose, leading to incorrect function calls. Mitigation: Enforce unique, highly specific
tool names and require rich, non-overlapping descriptions that detail the tool's unique
value proposition and side effects. * Versioning Chaos: Lack of semantic versioning
for tools, causing agents to break when an underlying API changes its contract.
Mitigation: Mandate strict Semantic Versioning (SemVer) for all tool definitions
(e.g., v1.0.0). The registry must support version-locking and provide a clear
deprecation path for older versions. * Insufficient Metadata: Tools are only indexed
by name and schema, making semantic search ineffective. Mitigation: Require
mandatory, structured metadata fields such as domain , capability_tags ,

33

Byrddynasty | Agentic Al Strategy

rate_limit_policy , and cost_per_call to enable intelligent filtering and agent decision-
making. * Stale Tool Definitions: The tool definition in the registry does not match
the actual, deployed API endpoint. Mitigation: Implement automated health checks
and reconciliation mechanisms that periodically validate the registry's schema against
the live API's OpenAPI specification, flagging or disabling stale entries. * Poor
Discoverability/Indexing: The registry only supports exact-match search, making it
useless for natural language queries. Mitigation: Implement a vector database for
semantic indexing of tool descriptions, allowing agents to query the catalog using
natural language intent rather than exact keywords. * Lack of Access Control: All
agents can see and potentially call all tools, leading to security and compliance risks.
Mitigation: Integrate the registry with an Identity and Access Management (IAM)
system, indexing tools by required permissions and filtering the catalog based on the
querying agent's identity and role.

Real-World Use Cases 1. Enterprise API Integration (Success Story): A large
financial institution uses a centralized tool registry to expose hundreds of internal
microservices (e.g., get_customer_balance , initiate_wire_transfer) to an internal Al
agent platform. The registry indexes tools by domain (e.g., 'Compliance’, 'Trading’,
'Retail Banking') and security_level . Success: Agents can dynamically discover and
securely invoke the correct, versioned API based on the user's natural language request
and the agent's IAM role, ensuring compliance and preventing unauthorized access. 2.
FinTech Compliance and Auditing (Failure Mode): A FinTech company's agent
platform relies on ad-hoc tool injection. A critical API for regulatory reporting

(generate_quarterly_report) is updated, changing a required parameter from date_range
to start_date and end_date . Failure: Because the tool definition was not versioned and
centrally managed, the agent's prompt was not updated, leading to the LLM
hallucinating the old parameter name. This resulted in silent API failures and a critical
compliance reporting delay, demonstrating the necessity of strict versioning and
automated schema validation in the registry. 3. Data Science Toolkits (Success
Story): An Al research lab maintains a tool catalog of hundreds of Python functions
(e.g., run_pca, train_xgboost , plot_histogram) for a data analysis agent. The registry
indexes these tools by input_data_type (e.g., 'DataFrame', 'TimeSeries') and
output_metric . Success: The agent can efficiently filter the massive tool space down to
a handful of relevant functions based on the current data context, significantly
accelerating the data exploration process and enabling complex, multi-step analysis
chains that would be impossible with a static tool list. 4. E-commerce Customer
Service (Failure Mode): A customer service agent uses a tool registry where multiple

34

Byrddynasty | Agentic Al Strategy

tools have ambiguous descriptions (e.g., search_products and find_inventory). Failure:
When a user asks, "Do you have the red shirt in stock?", the LLM frequently calls the
wrong tool or calls both, wasting resources and confusing the agent's response. This
highlights the failure of poor semantic indexing and the need for rigorous, non-
overlapping tool descriptions enforced by the registry's metadata standards.

Sub-skill 8.2b: Semantic Search for Tools - Embedding-based tool
discovery, natural language queries for tools, similarity search,
relevance ranking

Conceptual Foundation The foundation of semantic tool discovery rests on the
principles of Vector Space Models (VSM) and the Retrieval-Augmented
Generation (RAG) paradigm, adapted for tool selection. VSM posits that concepts and
meanings can be represented as high-dimensional vectors, or embeddings, where the
distance between vectors (e.g., cosine similarity) correlates with semantic relatedness.
In this context, the natural language query representing the agent's intent and the
descriptive metadata of available tools are all transformed into vectors. The theoretical
underpinning is that if a user asks to "find the current stock price for AAPL," the vector
for this query will be semantically close to the vector for a tool described as "fetches
real-time stock market data." This allows for a robust, intent-driven matching process
that moves beyond brittle keyword matching.

The application of RAG to tool selection is the core architectural pattern. Instead of
retrieving documents, the system retrieves tool definitions. The process involves an
initial retrieval step where a small, relevant subset of tools is selected from a large
library based on the user's prompt. This retrieved subset then augments the LLM's
context window, providing the model with only the necessary information to make a
final, informed decision on which tool to call and with what parameters. This is a direct
solution to the "context window bottleneck™ problem, where large tool libraries
would otherwise consume a significant portion of the LLM's limited input capacity,
leading to higher latency, increased cost, and degraded performance due to "lost in the
middle" phenomena.

Furthermore, this approach embodies the concept of a Semantic Interface. Traditional
APIs rely on precise, syntactically correct calls and often require prior knowledge of the

function signature. A Semantic Interface, however, allows for interaction using natural

language queries that express intent. The semantic search layer acts as a

35

Byrddynasty | Agentic Al Strategy

sophisticated translator, mapping the fuzzy, high-level intent into the precise, structured
input (the tool's JSON Schema) required by the underlying API. This abstraction layer is
crucial for building truly flexible and scalable agentic systems, as it decouples the
agent's reasoning from the technical specifics of the tool library.

Technical Deep Dive The technical implementation of semantic tool discovery follows
a specialized RAG pipeline, comprising three main stages: Indexing, Retrieval, and
Augmentation.

Indexing Phase: This is a one-time or batch process. For every tool, a concise, high-
quality tool description (the natural language summary of its function) and often the
function signature (name and parameter names) are concatenated and passed to an
Embedding Model (e.g., a Sentence Transformer or a specialized model like text-
embedding-3-large). The resulting high-dimensional vector (e.g., 1536 dimensions) is
stored in a Vector Database (e.g., Pinecone, Weaviate, Qdrant) alongside the original
tool's full JSON Schema definition. The quality of the initial description is paramount, as
it directly determines the vector's semantic accuracy.

Retrieval Phase: When a user prompt arrives, the agent framework first analyzes the
intent. The prompt (or a distilled version of the intent) is also converted into a query
vector using the same embedding model used in the indexing phase. This query vector
is then used to perform a k-Nearest Neighbors (k-NN) search against the vector
database. The database returns the top k tool vectors (e.g., $k=5%) that have the
highest cosine similarity to the query vector. The result is a list of tool metadata,
including the tool name, description, and the full JSON Schema, ranked by relevance
score.

Augmentation Phase: The retrieved tool definitions are then dynamically formatted
and injected into the LLM's context window, typically as part of the system prompt or a
dedicated tools array. The LLM then performs its final reasoning step, selecting from
this small, highly relevant set of tools. This process is often managed by a specialized
Tool Orchestrator component within the agent framework. For instance, a tool
definition might look like this before injection:

{
"type": "function",
"function": {

"name": "get_stock_price",
"description": "Retrieves the current market price for a given stock ticker.",

36

Byrddynasty | Agentic Al Strategy

"parameters": {
"type": "object",
"properties": {
"ticker": {"type": "string", "description": "The stock ticker symbol (e.g., AAPL)
}’

"required": ["ticker"]

The entire process ensures that the LLM is not burdened with irrelevant information,
leading to faster, more accurate tool calls.

Framework and Standards Evidence The concept of semantic tool discovery is
explicitly or implicitly supported across major agent frameworks and standards,
demonstrating its necessity for large-scale deployment.

Anthropic Tool Use (Explicit): Anthropic provides the most explicit architectural
pattern with its Tool Search Tool. This is a meta-tool that Claude can call when it
determines a tool is needed but is not in its immediate context. The tool is defined with
a defer_loading: true flag, indicating that its full definition should be indexed and
retrieved on-demand. Anthropic offers both BM25 (keyword-based) and custom
(embedding-based) search tools, highlighting the need for a robust retrieval mechanism
to manage large tool libraries.

OpenAl Function Calling (Implicit): While OpenAl's API does not expose an explicit
"Tool Search Tool," the underlying mechanism for tool selection in models like GPT-4 is
highly sophisticated and likely employs a form of semantic matching. The primary
standard used is 3SON Schema for defining the tool's input parameters. The quality of
the description field in the JSON Schema is critical, as this is the text the model uses
for semantic matching against the user's intent.

Google Function Calling (Gemini/Vertex AI): Google's approach, particularly with
the Gemini API and the Model Context Protocol (MCP), also relies on well-defined
tool schemas. The Gemini SDK simplifies the process, often abstracting away the need
for explicit semantic search for smaller toolsets. However, for large-scale applications,
the principle remains: the tool's description and schema are the semantic anchors used
by the model to decide relevance.

37

Byrddynasty | Agentic Al Strategy

OpenAPI and JSON Schema (Definition Standard): OpenAPI (Swagger) and its
underlying component, 3SON Schema, have become the de facto standards for

defining LLM tools. An OpenAPI specification for an API endpoint can be automatically
converted into the JSON Schema format required by LLMs. This standardization is vital
because it provides the structured, machine-readable metadata (the tool's name,

description, and parameter structure) that is then used to generate the high-quality
embeddings for the semantic search index.

Agent Skills Standard (Conceptual): The emerging concept of "Agent Skills" often
formalizes the idea of a tool library as a searchable catalog. A Skill is essentially a high-
level, composable tool. Standards in this space are moving towards requiring rich,
multi-layered metadata (e.g., pre-conditions, post-conditions, success metrics) in

addition to simple descriptions, all of which can be indexed as part of a more
sophisticated semantic search and retrieval process.

Practical Implementation Tool engineers face a critical Usability-Flexibility
Tradeoff when implementing semantic tool discovery. The key decision is how to

balance the need to save context tokens (flexibility/scalability) against the added
latency and complexity of the retrieval step (usability/speed).

Decision Point

Description

Tradeoff Analysis

Best Practice

Tool Indexing
Content

Search
Strategy

What to embed:
just the
description, or
the description +
function name +
parameter
names?

Pure vector
search (cosine
similarity) vs.
Hybrid search
(vector + BM25/
keyword).

Flexibility vs.
Precision: More
content increases
vector size and
indexing cost but
improves retrieval
precision for specific
function names.

Recall vs.
Relevance: Pure
vector search is great
for conceptual
matching; hybrid
search ensures high
recall for exact

38

Embed a concatenation of
the tool description,
function name, and a
summary of required
parameters.

Implement Hybrid
Search and use a
Reciprocal Rank Fusion
(RRF) algorithm to merge
the results, maximizing
both semantic relevance
and keyword accuracy.

Decision Point Description

Byrddynasty | Agentic Al Strategy

Tradeoff Analysis

Best Practice

keywords (e.g., "Jira"

or "GitHub").
Retrieval How many tools Context Saving vs. Start with $k=5¢% and
Threshold (k) to retrieve, Accuracy: A low k dynamically adjust based
or what similarity =~ saves context but risks on the LLM's success rate.
score threshold missing the correct Use a dynamic
to use. tool; a high k threshold based on the
increases accuracy but gap between the top-
defeats the purpose of ranked tool and the
the search. second-ranked tool.
Tool Should tools be Simplicity vs. Use Hierarchical
Categorization grouped by Scalability: Indexing where a top-
domain (e.g., Categorization level vector represents

Finance , HR, simplifies the index but the category, and lower-
DevOps)? adds a manual
maintenance burden.

level vectors represent
individual tools. The
agent first retrieves the
relevant category, then
searches within that
smaller index.

Common Pitfalls * Poor Tool Descriptions (Garbage In, Garbage Out): If the
natural language description of a tool is vague, ambiguous, or uses jargon not present
in the user's query, the embedding will be inaccurate, leading to low relevance scores
and the wrong tool being retrieved. * Mitigation: Enforce a strict style guide for tool
descriptions, requiring clear verbs, explicit side effects, and concrete examples. Use an
LLM to generate and validate descriptions for semantic clarity. * Low-Quality
Embedding Model: Using a general-purpose or low-dimensional embedding model can
fail to capture the subtle semantic differences between tools (e.g., a get_user_info tool
for Slack vs. one for Jira). * Mitigation: Use state-of-the-art, high-dimensional
embedding models (e.g., those optimized for code or technical text). Consider fine-
tuning the embedding model on tool descriptions and user queries. * The "Tool Search
Tool" Itself Fails: If the agent fails to recognize the need to call the search tool, or if
the search tool's own definition is too large or poorly described, the entire process
breaks down. * Mitigation: Ensure the meta-tool's definition is extremely concise and is

39

Byrddynasty | Agentic Al Strategy

always loaded into the context. Use a simple, robust search mechanism (like BM25) as a
fallback within the search tool. * Context Window Thrashing: If the agent retrieves a
tool, calls it, and then the next turn requires a different tool that was not retrieved, the
system must re-run the search, leading to unnecessary latency and token usage. *
Mitigation: Implement a Tool Cache that keeps the last 3-5 successfully used tools in
the context for a few turns, anticipating multi-step workflows. * Ignoring Keyword
Importance: Pure vector search can sometimes miss exact keyword matches (e.g., a
specific product ID or API name) that are critical for tool selection. * Mitigation:
Mandate the use of Hybrid Search (vector + keyword) with a robust result merging
strategy like RRF to ensure both semantic and lexical relevance are considered.

Real-World Use Cases Semantic tool discovery is critical in environments where the
agent's potential action space is vast and constantly changing.

1. Enterprise Automation Agents: A large corporation's internal agent needs access
to hundreds of APIs (e.g., Salesforce, SAP, custom internal microservices).

o Failure Mode: Without semantic search, the agent's context is immediately
saturated, leading to a 90% failure rate in tool selection or an inability to handle
any complex query due to context overflow.

o Success Story: Implementing a vector-indexed tool catalog allows the agent to
handle a query like "Find the Q3 sales report in Salesforce and create a Jira ticket
for the engineering team to review it." The agent dynamically retrieves only the
salesforce.getReport and jira.createTicket tools, succeeding with high accuracy
and low latency.

2. Multi-Domain Customer Service Bots: A single bot handles queries across
product documentation, billing systems, and technical support knowledge bases,
each exposed as a separate tool.

o Failure Mode: A query like "How do I reset my password?" might incorrectly
trigger the billing.processPayment tool because both tools contain the keyword
"account" in their descriptions, leading to a security and customer service disaster.

o Success Story: Semantic search, combined with high-quality embeddings,
accurately distinguishes the intent vector for "password reset" from "payment
processing," ensuring the agent calls the correct auth.resetPassword tool, even if
the tools share common keywords.

40

Byrddynasty | Agentic Al Strategy

3. Complex Software Development Agents (IDE Assistants): An agent needs to
access tools for file system operations, Git, package management, testing
frameworks, and deployment pipelines.

o Failure Mode: The agent attempts to use a git.commit tool when the user asks to
"save the file," because the descriptions are too similar.

o Success Story: The semantic index is built with a focus on the side effects of the
tools. The query "run the unit tests" is semantically distinct from "deploy the
application," allowing the agent to accurately retrieve the testing.runUnitTests
tool without being confused by the dozens of other DevOps tools.

Sub-skill 8.2c: Tool Composition and Chaining - Composable tool
interfaces, multi-step workflows, tool dependencies, orchestration
patterns

Conceptual Foundation Tool composition and chaining for Al agents are
fundamentally rooted in established software engineering principles, primarily Service-
Oriented Architecture (SOA) and Microservices. In this context, each tool is treated
as a specialized service with a well-defined interface (the tool schema). The core
concept is composability, which dictates that complex tasks should be achieved by
combining smaller, independent, and reusable components. This aligns with the principle
of Separation of Concerns, where each tool encapsulates a single, distinct capability.
The theoretical foundation is further supported by Process Algebra and Workflow
Modeling, which provide formalisms for defining sequences, parallelism, and
conditional branching in multi-step workflows. The agent, acting as the orchestrator,
must interpret the user's high-level goal and decompose it into a Directed Acyclic
Graph (DAG) of tool calls, where the output of one tool serves as the input for the
next, establishing critical tool dependencies. The quality of the tool's semantic
interface—its name and description—is paramount, as it enables the LLM to perform
effective semantic routing and planning.

The concept of Orchestration vs. Choreography is central to tool chaining.
Orchestration, typically managed by a central LLM or a dedicated supervisor agent,
involves explicit control over the sequence and state transitions of the workflow. This is
often implemented using State Machines or workflow engines (like LangGraph or AWS
Step Functions) to ensure deterministic execution and error handling. Choreography, on
conversely, relies on tools or agents reacting to events or messages without a central

41

Byrddynasty | Agentic Al Strategy

coordinator, leading to more flexible but potentially harder-to-debug systems. For most
agentic workflows, a hybrid approach is often preferred, where a central LLM
orchestrates the high-level plan, and specialized sub-agents or tools manage their
internal, localized choreography. This structure ensures both control and adaptability.

Finally, the notion of Semantic Interoperability is crucial. This refers to the ability of
the agent to understand and correctly map the output data structure of one tool to the
required input data structure of another, even if the tools were developed
independently. This is achieved through rigorous adherence to standards like JSON
Schema for tool definitions and a shared understanding of domain-specific terminology,
often facilitated by a Semantic Layer that provides canonical definitions for entities
and metrics. Without semantic interoperability, tool chaining breaks down into a series
of manual data transformations, defeating the purpose of autonomous agent execution.

Technical Deep Dive The technical foundation of tool composition rests on the Tool
Call Protocol. This protocol defines the standardized message format used by the LLM
to request a tool execution and the corresponding format for the tool's execution result.
A typical tool call involves the LLM generating a structured object (often JSON)
containing the tool name and a dictionary of arguments, which must strictly conform to
the tool's JSON Schema definition. For chaining, the LLM's subsequent reasoning step
receives the tool's output as a new message in the conversation history. The LLM must
then parse this output and decide the next action: another tool call, a final answer, or
an error state.

Tool Dependency Management is implemented through the workflow's state
representation. In a complex workflow, a tool may require the output of two or more
preceding tools. This is managed by the orchestrator, which tracks the completion status
and output of all executed tools. The orchestrator uses the Directed Acyclic Graph
(DAG) structure to determine which tools are ready to run (i.e., all their dependencies
are met). For example, a generate_report tool might depend on fetch_data and
analyze_data . The orchestrator ensures analyze_data only runs after fetch_data has
successfully completed and its output is available. This prevents runtime errors and
ensures the integrity of the multi-step process.

Schema Design for Composability is critical. Tool schemas should be designed with
minimal, atomic inputs and outputs. For instance, instead of a single tool
process_financial_data(csv_file: str) , it is better to have upload_file(data: str) ->
file_id: str and analyze_financial_data(file_id: str) -> analysis_result: json . This

42

Byrddynasty | Agentic Al Strategy

allows the file_id to become a canonical, reusable token that can be passed between
various tools (e.g., visualize_data(file_id) or share_file(file_id)), significantly
enhancing composability and reducing the LLM's need to handle large, raw data
payloads.

Orchestration Patterns are implemented using specialized frameworks. The
Sequential Chain is the simplest, where tools are called one after the other. The Fan-
Out/Fan-In pattern is used for parallelism, where the orchestrator calls multiple
independent tools concurrently and waits for all results before proceeding. The
Conditional Branching pattern uses the LLM's reasoning over a tool's output to select
the next path. For long-running, transactional workflows, the Saga Pattern is
employed, where a sequence of local transactions (tool calls) is coordinated, and a
compensating transaction (a rollback tool call) is defined for each step to ensure
atomicity and consistency in case of failure.

Framework and Standards Evidence OpenAlI Function Calling and Anthropic
Tool Use both rely on the LLM generating a structured JSON object that adheres to a
provided JSON Schema definition. The key evidence for chaining is the multi-turn
conversation structure. The LLM generates a tool_call message, the system executes
the tool and returns a tool_output message, and the LLM uses this output to generate
the next tool_call or the final response. This iterative process is the fundamental
mechanism for chaining.

Google Function Calling (e.g., Gemini API) similarly uses a structured FunctionCall
object. A concrete example of composition is a workflow where the agent first calls a
search_web tool to find a URL, then calls a read_webpage tool using the URL from the first
tool's output, and finally calls @ summarize_text tool with the content from the second
tool. The common thread is the LLM's ability to maintain the contextual state across
these distinct tool calls.

OpenAPI (Swagger) and JSON Schema are the foundational standards. OpenAPI is
often used to define the entire set of available tools (the tool library), providing a
machine-readable contract for the agent system. JSON Schema is used to define the
precise structure of the input parameters and expected output of each tool. For
composition, the type and format fields in the JSON Schema are crucial for ensuring
data compatibility between chained tools.

43

Byrddynasty | Agentic Al Strategy

The Agent Skills Standard (a conceptual standard) emphasizes the definition of
preconditions and postconditions for each skill/tool. For composition, the
orchestrator checks if the postconditions of tool A satisfy the preconditions of tool B
before chaining them. For example, Tool A's postcondition might be "A file named
'report.csv' exists in the working directory," which satisfies Tool B's precondition
"Requires a file named 'report.csv' as input." This formalizes tool dependencies and
enables more robust, verifiable planning.

Practical Implementation Tool engineers face a critical Usability-Flexibility
Tradeoff. Highly specialized, complex tools (high flexibility) are harder for the LLM to
use correctly (low usability). Conversely, overly simple, atomic tools (high usability)
require longer, more complex chains (low flexibility). The best practice is to design tools
that are semantically atomic—each tool performs one logical, high-value operation—
but are technically composite in their implementation (e.g., a single send_email tool
that internally handles authentication, templating, and API calls).

Key Design Decisions include: 1. Granularity: Should the tool be fine-grained (e.g.,
add_item_to_cart) or coarse-grained (e.g., checkout_process)? Decision Framework:
Use fine-grained tools when the steps need to be interleaved with LLM reasoning or
other tools; use coarse-grained tools for deterministic, internal sub-processes. 2. State
Management: Should the tool be stateless (preferred) or stateful? Decision
Framework: If state is required (e.g., a database connection), manage it externally in
the orchestrator and pass a session token or ID to the tool, maintaining the tool's
stateless interface. 3. I/0 Format: Always use structured data (JSON, XML) for inputs
and outputs. Best Practice: Define canonical data structures for common domain
objects (e.g., Order , Customer) and enforce them across all tool schemas to ensure
seamless chaining.

Common Pitfalls * Semantic Ambiguity in Tool Descriptions: The LLM
misinterprets the tool's purpose, leading to incorrect selection or parameter usage.
Mitigation: Use clear, action-oriented verbs in the tool name and provide a detailed,
example-rich description that explicitly states the tool's side effects and preconditions. *
Unstructured or Overly Verbose Tool Output: The tool returns a large block of
unstructured text or JSON that is too complex, causing the LLM to fail at parsing or
exceeding the context window. Mitigation: Enforce strict JSON output schemas for all
tools. Use output filtering or summarization within the tool wrapper to return only the
minimal, necessary data for the next step. * Circular Dependencies or Infinite

44

Byrddynasty | Agentic Al Strategy

Loops: The LLM enters a loop where Tool A calls Tool B, which calls Tool A, or a tool
fails and the LLM retries it indefinitely. Mitigation: Implement a max-depth counter
in the orchestrator to limit the number of chained calls. For failure handling, use the
Saga pattern with compensating transactions and exponential backoff for retries. *
Lack of Canonical Data Models: Different tools use different field names or formats
for the same entity (e.g., cust_id vs customer_identifier). Mitigation: Establish a
Semantic Layer or a shared data dictionary to enforce canonical data models across all
tool schemas, ensuring seamless data flow between chained components. * Hidden
Side Effects: The tool performs an action (e.g., sending an email, deleting a file) that
is not clearly documented in the schema description. Mitigation: Explicitly state all side
effects in the tool description, often using a dedicated "WARNING" or "SIDE EFFECTS"
section, to allow the LLM to reason about the ethical and practical implications of the
call.

Real-World Use Cases 1. E-commerce Order Fulfillment: A user asks to "Buy the
latest iPhone and track the shipping." This requires a chain: search_product ->
add_to_cart -> process_payment -> generate_tracking_link . Failure Mode: If
process_payment fails, the agent blindly retries the payment indefinitely, leading to
multiple charges or a stuck order. Success Story: A well-engineered chain uses the
Saga pattern to ensure atomicity, logging the state at each step and automatically
executing a compensating transaction (empty_cart) upon payment failure, ensuring a
clean rollback.

2. Data Analysis and Visualization: A user asks to "Analyze Q3 sales data and create
a chart showing regional performance." Chain: fetch_data(Q3) -> clean_data ->
run_statistical_model -> generate_chart . Failure Mode: Poorly designed tools might
return raw CSV text, causing the LLM to hallucinate data cleaning steps or fail to parse
the statistical model's output. Success Story: Tools are designed to pass a canonical
DataFrame_ID token between them, and the run_statistical_model tool returns a
structured JSON object of key metrics, which the generate_chart tool can consume
directly, ensuring data integrity and seamless flow.

3. Automated Incident Response: A user asks to "Investigate the high latency alert
on the API gateway." Chain: check_monitoring_dashboard -> query_logs(timestamp) ->
run_diagnostic_script -> open_jira_ticket . Failure Mode: The query_logs tool returns
an error, and the agent blindly proceeds to run the diagnostic script, which depends on
the logs, causing further issues. Success Story: The chain includes conditional

45

Byrddynasty | Agentic Al Strategy

branching: if query_logs fails, the agent calls @ notify_on_call_engineer tool instead of
proceeding, demonstrating robust error handling and composition based on tool
dependency satisfaction.

Sub-Skill 8.3: Tool UX Design for Agents

Sub-skill 8.3a: Writing Clear Tool Descriptions - Unambiguous
documentation, when-to-use guidance, input/output semantics,
agent-oriented writing

Conceptual Foundation The foundation of writing clear tool descriptions for agents
lies at the intersection of Software Engineering, API Design, and Formal
Semantics. From a software engineering perspective, a tool description is analogous to
an Interface Definition Language (IDL) or a contract, defining the function's signature,
preconditions, and postconditions. This contract must be unambiguous, ensuring that
the agent's reasoning engine (the LLM) can correctly parse the intent and the required
parameters, a concept rooted in Design by Contract (DbC). The tool's description
serves as the primary documentation for the agent, making principles of clear, concise
technical writing paramount.

API design principles, particularly those emphasizing discoverability and usability,
are directly applicable. A well-designed REST API uses clear resource names and
predictable parameter structures; similarly, a well-described agent tool must have a
name and description that immediately convey its purpose and scope. The description
acts as the semantic layer over the underlying imperative code, translating human-
readable intent into a machine-interpretable format. This semantic clarity is crucial
because the LLM does not execute the code; it only generates the call to the code.
Therefore, the description must contain all the necessary semantic cues for the LLM to
make an informed decision on when to call the tool and how to populate its arguments.

The theoretical underpinning for agent-oriented writing is found in Formal Semantics
and Knowledge Representation. The tool description, often expressed in a structured
format like JSON Schema, is a form of declarative knowledge. The LLM's decision-
making process is a form of abductive reasoning, where it infers the best tool call
(the hypothesis) that satisfies the user's request (the observation), given the available

46

Byrddynasty | Agentic Al Strategy

tools (the knowledge base). The quality of the tool description directly impacts the
fidelity of this inference. For example, the \"when-to-use guidance\" is a critical piece of
metadata that guides the agent's tool selection policy, effectively serving as a high-
level semantic constraint that reduces the search space of possible actions and prevents
tool hallucination.

Technical Deep Dive The technical core of clear tool description is the use of a formal
schema language, predominantly 3SON Schema, to define the tool's interface. This
schema specifies the function name, a high-level description, and a detailed definition of
the input parameters. For example, a tool to retrieve stock prices might be defined with
a type: object for parameters, and properties like ticker (string, required, with a
specific description like 'The stock ticker symbol, e.g., AAPL") and start_date (string,
optional, format 'YYYY-MM-DD'). The quality of the description field within the schema
is paramount, as it is the primary input for the LLM's reasoning.

Implementation protocols typically involve a three-step loop: the LLM receives the user
prompt and the tool definitions; it then outputs a structured response (e.g., a JISON
object) indicating the tool to be called and the arguments; finally, the agent runtime
executes the tool and feeds the result back to the LLM. The clarity of the tool
description directly influences the first step. A key API pattern is the inclusion of
semantic constraints within the description, such as specifying units, valid ranges, or
required data formats, which helps the LLM avoid generating invalid calls.

For example, a robust JSON Schema for a book_flight tool would not only define

origin and destination as strings but would also include a detailed description for the
function itself: 'Use this tool ONLY when the user explicitly asks to search for or book a
flight. Do not use for general travel advice.' Furthermore, parameter descriptions should
be precise: 'The three-letter IATA code for the departure airport.' This level of detail acts
as a powerful constraint on the LLM's output, minimizing parameter hallucination and
misuse.

Beyond input, the description must implicitly or explicitly define the output semantics.
While the output itself is often free-form text or a structured data payload, the LLM
needs to know what to expect to correctly interpret the result. Best practice dictates
that the tool's description should include a sentence about the expected return value,
e.g., 'Returns a JSON array of available flights, or an error message if no flights are
found.' This closes the loop and aids the LLM in the subsequent reasoning step.

47

Byrddynasty | Agentic Al Strategy

Framework and Standards Evidence The adoption of structured tool descriptions is a
cross-platform standard, though the specific syntax varies:

1.

OpenAl Function Calling (JSON Schema): OpenAl pioneered the widespread use
of JSON Schema for tool definition. The model is presented with a list of functions,
each defined by @ name , @ description, and a parameters object adhering to the
JSON Schema specification. The description field is critical, as it is the primary
prompt for the model's decision-making process. The model's output is a JSON
object conforming to the tool_calls structure, which the developer then executes.

. Anthropic Tool Use (XML): Anthropic's approach, often utilizing the Model Context

Protocol (MCP), frequently leverages XML tags to define tools within the prompt
context. Tools are wrapped in <tool_description> tags, and the agent is instructed to
output its tool call within <tool_use> tags. While functionally similar to JSON
Schema, the XML structure is often seen as more human-readable and integrates
naturally with the prompt's conversational flow, emphasizing the importance of clear,
agent-oriented writing within the description tags.

. Google Function Calling (OpenAPI/JSON Schema): Google's Gemini API also

relies on JSON Schema, often aligning closely with the OpenAPI Specification (OAS)
for defining functions. This alignment allows developers to reuse existing API
documentation, promoting a systematic approach. The tool definition includes the
function's name and a parameters object, where the description fields guide the
model.

. OpenAPI Specification (OAS): While not an LLM-specific framework, OAS is the

foundational standard for defining REST APIs. Its use of JISON Schema for request/
response bodies and its comprehensive metadata fields (like summary and
description) make it a natural fit for systematic tool engineering. Many LLM
frameworks internally convert OAS definitions into the format required for their
models.

. Agent Skills Standard: Emerging standards often build upon these foundations,

advocating for rich metadata beyond simple descriptions, such as usage_examples ,
failure_modes , and explicit preconditions and postconditions , further formalizing the
semantic contract for agent consumption.

Practical Implementation Key design decisions revolve around the granularity of
the tool and the verbosity of the description. A tool engineer must decide between a

48

Byrddynasty | Agentic Al Strategy

few highly flexible, complex tools (e.g., a single database_query tool) or many narrowly
focused, simple tools (e.g., get_user_profile , get_order_history). Narrow tools are

easier for the LLM to select correctly but increase the total number of tools, potentially

hitting context limits. Broad tools require more complex, detailed descriptions to guide

the LLM's parameter selection.

Usability-Flexibility Tradeoffs:

Design Choice

Usability (Agent)

Flexibility
(Developer)

Best Practice

Simple, Narrow
Tools

Complex,
Broad Tools

Strict JSON
Schema

Verbose
Descriptions

High (Clear intent)

Low (Requires
more reasoning)

High (Deterministic
output)

High (Clearer
intent)

Low (More tools to
manage)

High (Fewer tools,
reusable)

Low (Less forgiving)

Low (Increased
context window

Use for common, atomic
actions.

Use for domain-specific,
multi-step operations.

Enforce for critical data,
like financial
transactions.

Keep descriptions
concise but semantically

usage) rich.

Best Practices: 1. Agent-Oriented Description: Start the function description with a
clear \"when-to-use\" clause (e.g., \"Use this tool ONLY to search for current weather
conditions.\"). 2. Parameter Precision: Use the description field for each parameter
to specify units, constraints, and format (e.g., \"The temperature unit, must be 'celsius'
or 'fahrenheit'.\"). 3. Error Semantics: Explicitly mention the expected error return
format in the main tool description to help the LLM interpret failures correctly.

Common Pitfalls * Ambiguous Function Descriptions: Pitfall: A description like 'A
tool for data.' Mitigation: Specify the exact action and scope: 'Use this tool to retrieve
real-time stock market data for US-listed companies.' * Parameter Hallucination:
Pitfall: The LLM invents parameters not defined in the schema. Mitigation: Ensure all
required parameters are clearly marked as required: true and provide detailed,
constraining descriptions for all optional parameters. * Overly Broad Tool Scope:
Pitfall: A single tool attempts to perform too many unrelated actions (e.g., utility_tool
for both file I/O and network requests). Mitigation: Follow the Single Responsibility

49

Byrddynasty | Agentic Al Strategy

Principle (SRP); break down tools into atomic, focused capabilities. * Missing
Semantic Constraints: Pitfall: Defining a parameter as a string without specifying
the expected format (e.g., date format, currency code). Mitigation: Use regex patterns
(if supported by the framework) or explicitly state the required format in the parameter
description (e.g., 'Date must be in YYYY-MM-DD format."'). * Ignoring Output
Semantics: Pitfall: The tool returns a complex JSON object, but the LLM doesn't know
how to interpret the fields. Mitigation: Include a brief summary of the tool's return value
in the main description (e.g., 'Returns a JSON object with keys: 'status’, 'data', and
'‘error_message'.'). * Using Internal Jargon: Pitfall: Tool names or descriptions use
internal project terms or acronyms unknown to the agent's general knowledge base.
Mitigation: Use universally understandable, action-oriented names (e.g.,
get_user_location instead of fetch_geo_id).

Real-World Use Cases 1. Financial Trading Bot (Success Story): A well-
engineered tool description for execute_trade(symbol, quantity, order_type) explicitly
defines order_type as an enum ('market' , 'limit') and specifies that quantity must
be a positive integer. Success: The agent reliably executes trades without generating
invalid order types or negative quantities, ensuring system stability and preventing
financial loss.

1. Customer Support Agent (Failure Mode): A poorly described get_customer_info
tool lacks constraints and a clear 'when-to-use' guide. Failure: The agent calls the
tool for every user query, even simple greetings, leading to excessive API calls, high
latency, and potential privacy violations by unnecessarily accessing sensitive data.

2. Code Generation Agent (Success Story): A tool for generating code snippets,
generate_code(language, requirements) , uses a detailed description for requirements
that specifies the need for a list of desired features and constraints. Success: The
LLM consistently generates highly relevant and constrained code, as the tool
description effectively guides the LLM's output generation process.

3. E-commerce Inventory Management (Failure Mode): A tool named update_item
has an ambiguous description. Failure: The agent confuses the item_id parameter
with the sku parameter, leading to incorrect inventory updates and stock
discrepancies, demonstrating a critical failure in input/output semantics.

50

Byrddynasty | Agentic Al Strategy

Sub-skill 8.3b: Providing Tool Examples - Example Invocations,
Edge Cases, Common Patterns, Learning from Examples

Conceptual Foundation The practice of providing tool examples to a Large Language
Model (LLM) agent is fundamentally rooted in the concept of In-Context Learning
(ICL), a powerful emergent capability of transformer models. ICL allows the model to
learn a new task or modify its behavior based on a few input-output demonstrations
provided directly within the prompt, without requiring any weight updates or fine-tuning
[1]. In the context of tool use, these examples—often referred to as few-shot
examples—serve as a form of meta-training data, teaching the model the specific
semantic mapping between a user's natural language intent and the formal,
structured syntax of a tool invocation (e.g., a JSON function call).

From a software engineering and API design perspective, this process is an exercise in
semantic interface design. The tool's formal definition (via JSON Schema) provides
the syntactic contract, defining the function name, parameters, and data types.
However, the few-shot examples provide the semantic contract, illustrating the
pragmatics of the tool: when it should be called, how ambiguous user language should
be resolved into precise arguments, and what constitutes a successful invocation. This
dual-layer contract—formal syntax via schema and behavioral semantics via examples—
is crucial for bridging the gap between the LLM's fluid natural language understanding
and the deterministic requirements of external APIs. The theoretical foundation here
aligns with the principles of Design by Contract (DbC), where the LLM is guided by
both the formal specification and concrete behavioral demonstrations.

Furthermore, the effectiveness of tool examples draws upon principles from Case-
Based Reasoning (CBR), a paradigm in artificial intelligence where new problems are
solved by adapting solutions that were used to solve similar past problems (the "cases"
or examples). When an LLM processes a new user query, it essentially performs a
retrieval and adaptation task: it retrieves the most relevant few-shot example from its
context and adapts the corresponding tool invocation to the specifics of the new query.
This mechanism is particularly vital for handling edge cases and corner cases that are
difficult to capture solely through a natural language description in the tool's
documentation. By explicitly demonstrating how to handle an ambiguous request or a
complex argument structure, the examples effectively "prime" the model's internal
reasoning process, leading to more accurate and reliable tool-use decisions.

51

Byrddynasty | Agentic Al Strategy

The ultimate goal of providing tool examples is to maximize the semantic usability of
the tool for the agent. This is achieved by reducing the cognitive load on the LLM's
reasoning component. Instead of relying purely on zero-shot reasoning from the tool's
description, the agent can leverage the demonstrated patterns, making the decision
process faster, more efficient, and less prone to hallucination or misinterpretation. The
quality and relevance of these examples directly correlate with the agent's performance,
making the curation of few-shot examples a critical step in the agent engineering
lifecycle.

Technical Deep Dive The technical mechanism for providing tool examples is a
sophisticated application of in-context learning within the structured context of function
calling protocols. The foundation is the JSON Schema definition of the tool, which is
passed to the LLM as a system-level instruction. For example, a simple tool might be
defined as:

{
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {

"location": {"type": "string", "description": "The city and state, e.g., San Franci{
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]}

s

"required": ["location"]

}

Few-shot examples are then injected into the conversation history to demonstrate the
mapping function from user intent to this schema. The model is trained to recognize
the pattern of a user request followed by a structured response that adheres to the
schema. A typical few-shot example sequence in the context history would look like
this:

1. User Message (Input): "What's the weather like in Boston right now?"

2. Assistant Message (Invocation): The model generates a structured object, often
a JSON or XML block, that represents the tool call: {"tool_name":

"get_current_weather", "args": {"location": "Boston, MA", "unit": "fahrenheit"}} .

52

Byrddynasty | Agentic Al Strategy

3. Tool Message (Observation): The system executes the tool and returns the result,
which is injected back into the context: {"content": "The weather in Boston is 15°C and

sunny."} .

The few-shot examples are critical because they teach the model how to handle
semantic ambiguity and argument resolution. For instance, a zero-shot model
might struggle to infer the unit parameter if the user doesn't specify it. A few-shot
example that shows a query like "What's the weather in London?" resulting in
unit="celsius" establishes a default behavior or a regional preference that the model
learns implicitly. This is a form of in-context fine-tuning that guides the model's
internal token generation process to produce the precise, syntactically correct JISON/
XML output required for tool execution. The quality of the few-shot examples directly
impacts the model's precision (avoiding false positives) and recall (not missing
opportunities to call the tool). The most robust implementations use a dedicated system
role to define the tool and then interleave few-shot examples within the user /
assistant / tool conversation history to provide the clearest possible demonstration of
the required behavior. This technical pattern ensures the LLM learns the entire loop:
Intent \rightarrow Invocation \rightarrow Observation \rightarrow
Response.

Framework and Standards Evidence All major LLM frameworks and standards
incorporate mechanisms for few-shot tool examples, though the implementation details
vary based on the underlying protocol. The core principle remains the same: inject

structured examples into the context to guide the model's function-calling behavior.

Framework/
Mechanism for Tool Examples Technical Implementation Detail

Standard

OpenAl Few-shot examples are typically A successful tool-use example is

Function injected as part of the structured as a sequence: user

Calling conversation history using the message (the query), assistant
assistant and function roles message with function_call object
[2]. (the invocation), and a function

message with the tool's content
(the result). This explicitly
demonstrates the full turn-taking
sequence.

53

Framework/
Standard

Byrddynasty | Agentic Al Strategy

Mechanism for Tool Examples

Technical Implementation Detail

Anthropic Tool
Use (Claude)

Google
Function
Calling
(Gemini)

OpenAPI/
JSON Schema

Agent Skills
Standard
(Conceptual)

Examples are often provided in
the system prompt using XML
tags (<example>) or similar
structured delimiters to define
the input and the expected tool-
use output [3].

Few-shot examples are
integrated into the history of
the conversation, similar to
OpenAl, using specific roles to
denote the user query and the
model's function-calling response

[4].

While not a direct mechanism for
few-shot invocation examples,
OpenAPI specifications can be
augmented with examples fields
within the parameter definitions

[5].

The standard advocates for a
dedicated demonstrations field
within the skill definition, which
explicitly links a natural language
task to a structured skill
invocation, often using a
standardized format like YAML or
JSON for easy parsing and
retrieval.

54

Anthropic's approach emphasizes
clear separation of instruction and
example within the system prompt.
The examples show the model's
internal reasoning process (e.g.,
using ReAct-style thinking) leading
up to the <tool_use> tag, which
contains the structured call.

The model is provided with a tools
object (JSON Schema) and the
conversation history. Examples
demonstrate the model's ability to
generate the structured
functionCall object, ensuring the
model learns the precise argument

mapping.

The examples field in a JSON
Schema parameter (e.g., {"type":
"string", "description": "City
name", "examples": ["London",
"Tokyo"]}) provides the LLM with
valid, common input values, which
acts as a weak form of few-shot
guidance for argument construction.

This approach formalizes the few-
shot concept, making the examples
a first-class citizen of the tool

definition, enabling dynamic retrieval

and validation across different agent
platforms.

Byrddynasty | Agentic Al Strategy

The key takeaway is that all frameworks rely on the LLM's ICL ability, but they differ in
where the examples are placed (system prompt vs. conversation history) and how they
are formatted (JSON objects vs. XML/Markdown structures). The most effective method
is to provide the full turn-taking sequence, including the user's intent and the model's
resulting structured output, to train the model on the entire decision boundary.

Practical Implementation Tool engineers face several key design decisions when
implementing few-shot examples, primarily revolving around the trade-off between
usability (making the tool easy for the LLM to use) and flexibility (allowing the tool to
handle a wide range of inputs and complex scenarios).

Decision Usability-Flexibility

Tradeoff

Best Practice Guidance

Framework

Example Static (High Usability, Hybrid Approach: Use a small set of static,
Selection Low Flexibility) vs. core examples (e.g., 2-3) to establish baseline
Strategy Dynamic (Low behavior, and supplement them with dynamically
Usability, High retrieved examples (e.g., 2-3) for specific,
Flexibility) complex, or edge-case queries.
Example Simple (High Progressive Complexity: Start with simple,
Complexity Usability, Low canonical examples. Gradually introduce
Robustness) vs. examples demonstrating multi-tool calls,
Complex (Low argument default values, and error-handling
Usability, High logic. The goal is to teach the model to handle
Robustness) the full spectrum of the tool's intent space.
Example Minimal (Token- Context-Rich Format: Include the full turn-
Format efficient) vs. Verbose taking sequence (User Query, Model Reasoning/

(Context-rich)

Implementation Best Practices:

Thought, Tool Invocation, Tool Observation) to

provide maximum context. While verbose, this

trains the model on the entire ReAct-style loop,
leading to superior performance.

1. Prioritize Edge Cases: The primary value of few-shot examples is not to teach the
common path, but to teach the edge cases where the zero-shot description fails.
Examples should explicitly demonstrate how to handle ambiguous arguments,

55

Byrddynasty | Agentic Al Strategy

required fields, and semantic nuances (e.g., "next week" translating to a specific date
format).

2. Include Negative Examples: For every tool, include at least one example where
the user query is similar to a tool-use case but should not trigger the tool. This
establishes the decision boundary and significantly reduces false positive tool calls.

3. Use Real-World Data: Base examples on anonymized logs of actual user
interactions and model failures. The most effective few-shot examples are those that
correct a previously observed failure mode.

4. Version Control Examples: Treat the few-shot example set as a critical piece of
software configuration. Store them in a version-controlled repository and link them
directly to the tool's schema version to ensure consistency and traceability.

Common Pitfalls Providing tool examples is a powerful technique, but it is fraught with
potential pitfalls that can degrade agent performance.

e Context Pollution and Overloading: Injecting too many examples, or examples
that are irrelevant to the current task, consumes valuable context window space and
can confuse the LLM, leading to lower performance and higher latency.

o Mitigation: Implement dynamic few-shot selection using vector similarity search
(RAG) to retrieve only the top 3-5 most relevant examples for the current user
query.

e Example-Induced Bias (Overfitting): If all examples demonstrate a tool being
called, the model may develop a strong bias to call that tool even when inappropriate
(false positives). If all examples are simple, the model may fail on complex edge
cases.

o Mitigation: Ensure a balanced dataset that includes negative examples (user
queries that should not trigger a tool call) and examples that explicitly
demonstrate complex argument structures or error handling.

e Syntactic Drift/Inconsistency: Few-shot examples provided in a slightly different
format or syntax than the model's expected output can introduce noise, causing the
model to generate malformed JSON or function calls.

o Mitigation: Strictly adhere to the model's required output format (e.g., the exact
JSON structure for function calls) and use automated validation to ensure all
examples are syntactically perfect.

56

Byrddynasty | Agentic Al Strategy

e Edge Case Omission: Failing to include examples that cover common edge cases
(e.g., null values, empty lists, ambiguous requests, multi-tool calls) results in brittle
agents that fail in production.

o Mitigation: Systematically identify high-risk edge cases during tool design and
create specific few-shot examples for each. Prioritize examples that demonstrate
error recovery or complex logic.

e Static Example Maintenance Burden: Hardcoding examples in the system prompt
makes the agent difficult to update and maintain, especially as the toolset evolves or
new failure modes are discovered.

o Mitigation: Externalize few-shot examples into a managed dataset or configuration
file, allowing for version control, A/B testing, and easy updates without modifying
the core system prompt logic.

e Misalignment of Intent and Invocation: The example's user query might not
clearly map to the tool call, or the tool call might be semantically incorrect for the
query, teaching the model a flawed mapping.

o Mitigation: Conduct rigorous human review of all few-shot examples to ensure the
user intent, the model's reasoning (if included), and the final tool invocation are
perfectly aligned and logically sound.

Real-World Use Cases The quality of few-shot tool examples is critical in real-world
agent deployments, determining the success or failure of complex automation tasks.

1. Financial Data Retrieval Agent:

o Tool: get_stock_price(ticker: str, date: optional[str]) .

o Failure Mode (Poor Examples): If examples only show simple calls like
get_stock_price(ticker="AAPL") , the agent fails when a user asks, "What was the
price of Apple stock on the day before yesterday?" The model might hallucinate
the date or use an incorrect format.

o Success Story (Well-Engineered Examples): Examples explicitly demonstrate
parsing relative time (e.g., "day before yesterday" -> date="2026-01-01") and
handling ambiguous tickers (e.g., "Tesla" -> ticker="TSLA"). This ensures the
agent correctly resolves the semantic intent into the precise API call, leading to
high-fidelity financial reporting.

57

Byrddynasty | Agentic Al Strategy

2. Customer Support Automation Agent:

o Tool: create_support_ticket(priority: enum, subject: str, description: str) .

o Failure Mode (Poor Examples): Examples only show high-priority tickets. When a
user says, "My printer is making a funny noise," the agent defaults to high
priority, overloading the support team with non-critical issues.

o Success Story (Well-Engineered Examples): Few-shot examples are used to define
the priority mapping. Examples show "printer not working" -> priority="high",
but "printer making noise" -> priority="low" . This fine-grained control, taught
through examples, allows the agent to accurately triage and route tickets,
significantly improving operational efficiency.

3. Code Generation Agent:

o Tool: read_file(path: str) and write_file(path: str, content: str) .

o Failure Mode (Poor Examples): Examples only show single-tool calls. When asked
to "Read config.json , update the version number, and write it back," the agent
fails to chain the read and write calls correctly, often attempting to write before
reading or using the wrong path.

o Success Story (Well-Engineered Examples): Examples demonstrate the multi-
step orchestration pattern (ReAct-style). The few-shot sequence shows the
agent's internal thought process, the first tool call (read_file), the observation
(the file content), the subsequent reasoning, and the final tool call (write_file).
This trains the model on complex task decomposition and sequential execution,
enabling the agent to handle multi-step software development tasks reliably.

Sub-skill 8.3c: Optimizing Semantic Altitude: Balancing Specificity
and Flexibility, Abstraction Levels, Generalization vs Precision

Conceptual Foundation The concept of Semantic Altitude in tool engineering refers
to the level of abstraction at which a tool's capability is presented to the Large
Language Model (LLM) agent. This is fundamentally rooted in classical software
engineering principles, particularly API Design and the management of Abstraction
Layers. A low semantic altitude tool is highly specific and granular (e.g.,

get_user_by_id), offering high precision but low flexibility. A high semantic altitude tool
is generalized and abstract (e.g., manage_user_data), offering high flexibility but risking
low precision and increased cognitive load for the agent. The theoretical foundation

58

Byrddynasty | Agentic Al Strategy

draws from the Principle of Least Astonishment, where the tool's behavior must
predictably align with its description, and Cognitive Load Theory, which suggests that
the agent's reasoning performance degrades as the complexity and number of low-
altitude tools increase.

The core challenge is the Generalization vs. Precision Tradeoff. Generalization,
achieved through higher semantic altitude, allows a single tool to cover a wider range of
user intents, reducing the number of tools the agent must consider. However, this
generalization often requires the agent to infer more complex arguments or choose
from a broader set of optional parameters, which introduces ambiguity and reduces the
precision of the tool call. Conversely, high precision, achieved through low semantic
altitude, ensures the agent's call is exact but necessitates a proliferation of specialized
tools, which can overwhelm the agent's context window and lead to tool selection
errors.

Effective tool engineering seeks an optimal semantic altitude—a "sweet spot" where the
tool is abstract enough to be broadly useful but specific enough to be reliably invoked
by the LLM. This balance is achieved by designing interfaces that hide implementation
complexity while exposing just the right level of semantic detail. For instance, instead of
exposing the underlying database query language, the tool exposes a high-level search
function. This is analogous to the concept of Cohesion and Coupling in module
design: tools should be highly cohesive (focused on a single, clear domain) and loosely
coupled (their invocation should not require deep knowledge of other tools or internal
state). The optimal altitude is a function of the agent's capability and the complexity of
the task domain.

Technical Deep Dive The technical mechanism for optimizing semantic altitude is
primarily the design of the JISON Schema used to define the tool's input parameters.
This schema acts as the formal contract, and the balance between specificity and
flexibility is managed through the strategic use of the required array and parameter
typing. A low-altitude tool maximizes specificity by having a long required array and
strict types (e.g., integer , enum). A high-altitude tool maximizes flexibility by having a
short or empty required array, relying heavily on optional parameters and more
generalized types (e.g., string for a search query).

Consider a generalized tool for content management, manage_content . To balance its
altitude, the schema might look like this:

59

Byrddynasty | Agentic Al Strategy

{
"name": "manage_content",
"description": "Creates, updates, or deletes content items.",
"parameters": {
"type": "object",
"properties": {
"action": {"type": "string", "enum": ["create", "update", "delete"]},

"content_type": {"type": "string", "description": "e.g., 'blog_post', 'product_page
"id": {"type": "integer", "description": "Required for update/delete actions"},
"title": {"type": "string", "description": "Required for create/update actions"},
"body": {"type": "string", "description": "The main content text"}

3

"required": ["action", "content_type"]

}

In this example, the tool is at a medium-high altitude. The action and content_type are
required (specificity), ensuring the agent always provides the fundamental context.
However, id, title, and body are optional (flexibility). The agent must use its
reasoning to determine which optional fields are necessary based on the chosen action
(e.g., id is needed for delete). This design shifts the burden of argument generation
from a rigid requirement to a contextual decision, optimizing the semantic altitude for
agent usability.

Furthermore, the API Pattern employed significantly impacts altitude. The Command
Pattern (e.g., create_user) is inherently low-altitude and specific. The Query Pattern
(e.g., search_data) is often high-altitude, as the query parameter itself is a flexible,
generalized input. Best practice dictates using the Command Pattern for state-changing
operations and the Query Pattern for read-only operations, thus aligning the required
precision (low altitude) with the potential risk of the action. The tool's description is
the final, critical component, serving as the natural language layer that guides the LLM's
semantic understanding of the altitude and scope. A well-written description can
compensate for a complex schema by clearly articulating the tool's generalized purpose.

Framework and Standards Evidence The major LLM frameworks demonstrate the
balancing act of semantic altitude through their tool definition mechanisms, primarily
relying on JSON Schema.

1. OpenAl Function Calling: OpenAl pioneered the use of JSON Schema for tool
definition. The balance is struck by encouraging developers to use optional
parameters (properties not listed in required). For example, a search_flights tool

60

Byrddynasty | Agentic Al Strategy

might require origin and destination (specificity) but make departure_date ,
max_price , and cabin_class optional (flexibility). The LLM's prompt is implicitly
engineered to use these optional fields only when the user's request explicitly
provides the necessary information, thus dynamically adjusting the tool's specificity
based on context.

2. Anthropic Tool Use (Tools): Anthropic emphasizes clear, concise descriptions
as a primary lever for semantic altitude. Their guidance often suggests consolidating
multiple related actions into a single tool and using the description to clearly
delineate the tool's boundaries. They also recommend enriching tool responses with
metadata to help the agent reason better, effectively lowering the cognitive load on
the agent by providing more context, which allows the tool's interface to remain at a
slightly higher altitude.

3. Google Function Calling (Gemini): Google's implementation is structurally similar
to OpenAl's, leveraging JSON Schema. A key example of balancing is the use of
polymorphism via one0f or any0f in the schema (though less common in basic
implementations). This allows a single tool, say process_payment , to accept multiple,
distinct input structures (e.g., @ credit_card_object OR a paypal_token_object),
providing high flexibility under a single, generalized tool name.

4. OpenAPI Specification (OAS): OAS, the standard for REST APIs, serves as a
powerful, high-altitude definition for agent tools. An agent can be given access to an
entire OpenAPI document, which defines numerous low-altitude endpoints (e.g., /
users/{id} , /users/search). The agent's challenge is to select and orchestrate these
granular tools. The OAS structure itself provides the necessary abstraction by
grouping related operations under a single API, allowing the agent to reason about
the entire service at a high level before diving into the specific endpoint (low
altitude).

5. Agent Skills Standard (Conceptual): Emerging standards often focus on defining
a Tool Manifest that includes not just the schema but also semantic tags and
usage examples. These examples act as in-context learning for the LLM, helping it
understand the intent behind the tool at a higher altitude, even if the underlying
schema is highly specific. This meta-data layer is crucial for optimizing the semantic
altitude without altering the underlying technical contract.

Practical Implementation Optimizing semantic altitude requires a structured decision
framework centered on the Usability-Flexibility Tradeoff. The key decision is whether

61

Byrddynasty | Agentic Al Strategy

to create many specific tools (low altitude) or few generalized tools (high

altitude).
Decision Framework: . .
. . . e High Altitude
Optimal Semantic Low Altitude (Specific) .
. (Generalized)
Altitude
Tool Count High (e.g., 10+ tools) Low (e.g., 3-5 tools)
Agent Cognitive Load High (Tool Selection) High (Argument Generation)
Precision/Reliability High (Simple, strict arguments) Low (Complex, optional
arguments)
Flexibility /Coverage Low (Narrow use case) High (Broad use case)
Best Practice Use for critical, high-precision Use for exploratory, data-
actions (e.g., retrieval actions (e.g.,
confirm_payment). search_data).

Best Practices for Implementation:

1.

Use Optional Parameters for Flexibility: Design the tool at a high altitude
(generalized name, broad scope) but use JSON Schema's required array to enforce
only the absolute minimum parameters. All other parameters should be optional,
allowing the agent to specialize the call when needed.

. Semantic Cohesion: Ensure that all functionality within a single tool is semantically
related. A tool named manage_calendar should not also handle sending emails. This
maintains a clear boundary for the agent.

. Action vs. Data Retrieval: Tools that perform irreversible actions (e.g.,
delete_record) should be at a lower, more specific semantic altitude to maximize
precision and minimize the risk of agent error. Tools for data retrieval (e.g.,
query_database) can be at a higher altitude to maximize flexibility.

. Layered Abstraction: Implement a Tool Server layer that acts as a translator. The
LLM calls a high-altitude tool (e.g., find_document(title="report")), and the Tool
Server translates this into a sequence of low-altitude internal API calls (e.g.,
search_index , filter_results , fetch_content). This allows the agent to operate at a
high, usable altitude while maintaining the precision of low-altitude execution.

62

Byrddynasty | Agentic Al Strategy

Common Pitfalls * Pitfall 1: Over-Generalization (Too High Altitude): Creating a
single tool like perform_action(task: str) that accepts a free-form string. Mitigation:
Decompose the tool into specialized, lower-altitude functions (e.g.,

create_calendar_event , send_email) with strict, typed parameters. * Pitfall 2: Over-
Specialization (Too Low Altitude): Exposing dozens of highly granular CRUD
operations (e.g., get_user_by_id, get_user_by_email , get_user_by_username). Mitigation:
Consolidate into a single, flexible tool like search_user(query: str, field: str = "id")
using optional parameters and a clear description of supported fields. * Pitfall 3:
Ambiguous Descriptions: Using vague language in the tool description that doesn't
clearly define the tool's side effects or scope. Mitigation: Ensure descriptions explicitly
state the tool's purpose, inputs, outputs, and any real-world side effects (e.g., "This tool
sends a non-reversible email to the specified recipient"). * Pitfall 4: Schema Drift:
The tool's actual implementation diverges from its JSON Schema definition. Mitigation:
Implement automated schema generation from the source code (e.g., using Python type
hints and Pydantic) and integrate schema validation into the CI/CD pipeline to ensure
the contract is always honored. * Pitfall 5: Tool Hallucination: The LLM invents
parameters or calls tools for inappropriate tasks. Mitigation: Use strict, typed schemas
with clear enum constraints where possible, and ensure the tool's nhame and description
are highly distinct and unambiguous. * Pitfall 6: Non-Idempotent Tool Calls: The
agent calls a tool multiple times due to reasoning errors, causing unintended
consequences (e.g., double-booking a flight). Mitigation: Design tools to be
idempotent where possible, or include a unique transaction ID parameter that the tool
server can use to prevent duplicate execution.

Real-World Use Cases The quality of semantic altitude optimization is critical in real-
world agent deployments, particularly in enterprise automation and customer service.

1. Enterprise Resource Planning (ERP) Agent:

- Failure Mode (Low Altitude): An agent is given 50 separate tools for every
granular ERP action: create_invoice , update_invoice_status , get_invoice_by_id,
get_invoice_by_customer . When a user asks, "Please process the new order for
Acme Corp," the agent struggles to chain the correct 3-4 tools in sequence, often
failing due to tool selection errors or argument mismatch.

- Success Story (Optimal Altitude): The tools are consolidated into two high-
altitude tools: process_order(customer_name, items) and
query_financial_records(entity_type, filter_params) . The agent reliably calls

63

Byrddynasty | Agentic Al Strategy

process_order , which internally handles all the low-level steps (inventory check,
invoice creation, status update), leading to high automation success rates.

2. Customer Service Chatbot (Ticketing System):

o Failure Mode (High Altitude): A single tool, handle_request(details: str) , is
used. When a user says, "My password is not working," the LLM generates a
vague details string, and the tool server fails to reliably parse the intent into a
specific action (e.g., reset_password VS. check_account_status). This leads to non-
deterministic behavior and poor customer experience.

- Success Story (Optimal Altitude): Tools are defined at a medium altitude:
reset_user_password(user_id) , check_system_status(service_name) , and
create_support_ticket(summary, severity) . The agent's reasoning is forced to be
precise enough to select the correct tool and extract the required user_id,
balancing flexibility with the necessary precision for a critical security action.

3. Financial Trading Agent:

- Failure Mode (Low Altitude): The agent is exposed to raw market data APIs:
get_stock_price(symbol) , get_volume(symbol) , get_moving_average(symbol) . A
request to "Find stocks with a 50-day moving average crossover" requires the
agent to plan a complex, multi-step chain of calls, often exceeding the token limit
or failing mid-execution.

> Success Story (Optimal Altitude): A single, high-altitude tool,
execute_technical_analysis(strategy_name, parameters) , is exposed. The agent calls
this tool with high-level parameters, and the tool server executes the complex,
low-level data fetching and calculation logic, ensuring the agent focuses on
strategic decision-making rather than data plumbing.

Sub-skill 8.3: Dynamic Tool Generation and Agent Self-Modification

Conceptual Foundation The foundation of dynamic tool generation and agent self-
modification is rooted in the principles of meta-programming and self-referential
systems. Meta-programming, defined as "programming to program," is the ability of a
system to treat its own code or structure as data that can be read, analyzed, and
manipulated at runtime. In the context of LLM agents, this means the agent is not
merely executing pre-defined functions but is capable of generating the definition and
implementation of new capabilities (tools) on the fly. This elevates the agent from a

64

Byrddynasty | Agentic Al Strategy

simple executor to a meta-level architect, allowing it to adapt its own functional
interface to solve novel problems that were not anticipated by its initial design [4].

The concept of self-modification extends this by allowing the agent to alter its own
internal state, logic, or even its core prompt/weights, a capability often explored in
theoretical frameworks like the Godel Agent [2]. This involves the agent possessing a
form of self-awareness—the ability to inspect its own runtime memory, code, and
reasoning trace—and a mechanism for self-improvement—the ability to apply changes
that persist across interactions. This is a profound departure from traditional software,
where code is static at runtime. For agents, self-modification enables accelerated
learning and persistent capability evolution, where an investment in one generation of
self-edit benefits all future interactions.

From a software engineering perspective, dynamic tool generation relies heavily on
modularity and abstraction. Tools must be designed as highly abstracted,
independent units of capability, each exposing a clear, standardized interface. This
interface is typically defined using a semantic contract, such as JSON Schema, which
serves as the universal language between the LLM's reasoning engine and the external
execution environment. This abstraction allows the agent to reason about what
capability is needed (the semantic intent) without needing to know the low-level how
(the implementation details), making the generated tools composable and reusable
across different contexts.

Finally, the technical realization of this relies on semantic interface design. The LLM
must be able to translate a high-level goal into a precise, structured tool definition. This
is achieved by training the LLM to output a data structure (e.g., a Pydantic model or
JSON object) that describes the new tool's name, docstring, and parameter schema.
This structured output acts as the blueprint for the Tool Generation Module (TGM),
which then instantiates the actual executable code and registers the new capability with
the agent's Tool Router or Model Context Protocol (MCP) layer, effectively
extending the agent's own API at runtime.

Technical Deep Dive Dynamic tool generation is a multi-stage technical process that
bridges the LLM's reasoning space with the external execution environment, primarily
through the rigorous use of structured data protocols. The process begins with the Tool
Generation Module (TGM), which is an LLM instance specifically prompted to act as a
meta-programmer. Its output is not a function call, but a Tool Definition Object
(TDO), which must conform to a predefined Meta-Schema. This Meta-Schema is a

65

Byrddynasty | Agentic Al Strategy

JSON Schema that dictates the structure of a valid tool definition, typically requiring
fields for tool_name (string), tool_description (string, for semantic discovery), and
parameters (@ nested JSON Schema object defining the function's inputs).

Once the TDO is generated, it enters the Validation and Instantiation phase. The
TDO is first validated against the Meta-Schema to ensure structural integrity. If valid,
the TDO is passed to a Tool Instantiation Engine (TIE). The TIE is responsible for
translating the declarative TDO into an executable artifact. For Python agents, this often
involves using libraries like Pydantic to dynamically create a BaseModel from the
parameters schema and then wrapping a generic execution function with this model. The
resulting artifact is a callable function with built-in input validation, ensuring that any
subsequent calls to the generated tool are type-safe and schema-compliant.

The instantiated tool is then registered with the Tool Router or Model Context
Protocol (MCP) layer. The MCP acts as a centralized registry, storing the tool's name,
its semantic description (docstring), and a pointer to its execution endpoint. Crucially,
the MCP indexes the tool's description using a vector embedding (e.g., using a
Sentence Transformer model). This enables Semantic Tool Discovery, where the
LLM's next prompt is embedded and compared against the tool vector index, allowing
the agent to select the most relevant tool from a potentially massive, dynamically
changing catalog, rather than relying on brittle keyword matching or including all
schemas in the prompt.

For Self-Modification, the technical deep dive involves a specialized tool called
self_edit_code oOr update_prompt . This tool accepts a structured input (e.g., a JSON
object with target_file, line_number , and new_content) and executes a privileged
operation on the agent's internal configuration or source code. This operation must be
executed within a secure, isolated sandbox to prevent system compromise. The
protocol for self-modification often includes a transactional mechanism where the
change is staged, validated (e.g., running unit tests on the modified code), and only
committed if the validation passes, ensuring the agent's integrity is maintained during
the self-improvement process. This entire process is logged and traced, providing a
complete audit trail of the agent's evolution.

66

Byrddynasty | Agentic Al Strategy

Framework and Standards Evidence The concept of dynamic tool generation is built
upon the standardized tool-calling mechanisms of major LLM providers, which all rely on
a structured schema for capability definition:

1. OpenAl Function Calling (Tools API): OpenAl pioneered the use of JSON Schema
to define tool interfaces. While initially focused on calling pre-defined functions, the
architecture inherently supports dynamic generation. The key is that the LLM is
trained to output a function_call object that strictly adheres to the input schema
defined in the tools parameter. For dynamic generation, the agent can use a "meta-
tool" (e.g., create_tool) whose schema accepts a string or JISON object representing
the new tool's definition (name, description, parameters). The agent then calls this
meta-tool, and the execution environment uses the output to register a new, callable
function, demonstrating a self-extending capability [1].

2. Anthropic Tool Use (Claude): Anthropic's approach is similar, utilizing XML tags
(<tool_use>) to structure the tool call, but their advanced features emphasize Tool
Search and Tool Discovery. The Anthropic-style Dynamic Tool Search Tool
allows the agent to query a vast, indexed catalog of tools (often stored in a vector
database) using semantic search based on the user's intent and the tool's docstring.
This mechanism is a prerequisite for dynamic generation, as it allows the agent to
first search for an existing tool, and only if none is found, trigger a generation
process, thereby preventing tool sprawl and promoting reuse [5].

3. Google Function Calling (Gemini API): Google's implementation, also known as
Tool Use, is highly schema-strict, relying on the OpenAPI Specification or JSON
Schema for function definitions. This strictness is crucial for dynamic generation, as it
forces the LLM to be precise when generating a new tool's schema. A concrete
example involves the agent generating a new Tool object, which is a Pydantic model
wrapper around the JSON Schema, and then passing this object to the runtime
environment for immediate registration and use within the current conversation turn

[6].

4. OpenAPI Specification and JSON Schema: These standards are the lingua franca
for defining the structure of dynamically generated tools. JSON Schema provides the
necessary primitives (type , properties , required , description) to define the input
parameters of a function. The OpenAPI Specification extends this by allowing the
definition of entire API endpoints, including paths, methods, and response schemas.
A dynamically generated tool often takes the form of a mini-OpenAPI document,

67

Byrddynasty | Agentic Al Strategy

which the agent's runtime environment can parse to create a callable function,
complete with validation and documentation.

. Agent Skills Standard (Conceptual): While not a formal standard, the emerging

consensus in agent frameworks (like LangChain, CrewAl, etc.) is the use of a unified
Tool class or interface. This abstraction allows the agent to treat a simple Python
function, a complex microservice, or a dynamically generated capability with the
same interface. The core evidence lies in the Tool Router component, which uses
the standardized schema to route the LLM's call to the correct execution engine,
regardless of whether the tool was pre-defined or generated moments ago.

Practical Implementation The practical implementation of dynamic tool generation
requires tool engineers to make critical design decisions regarding the Tool Generation
Module (TGM) and the Tool Execution Protocol (TEP).

Key Design Decisions:

1.

Schema Generation Mechanism: Should the TGM generate raw JSON Schema, or
a higher-level abstraction like a Pydantic model? Decision: Generating Pydantic
models (or similar language-native objects) is preferable, as it provides immediate
type-checking and validation within the execution environment, reducing the risk of
schema hallucination.

. Tool Scope and Lifetime: Should generated tools be ephemeral (only for the

current task) or persistent (added to the global catalog)? Decision: Start with
ephemeral tools for safety and rapid prototyping. Only promote a tool to persistent
status after it has been validated by a human or an automated testing loop,
mitigating the "Tool Sprawl" pitfall.

. Execution Environment: Should generated tools be executed in the main agent

process or a secure sandbox? Decision: Mandatory sandboxing (e.g., using a
containerized environment or a secure code interpreter) is required for any
dynamically generated code to prevent arbitrary code execution and system
compromise.

Usability-Flexibility Tradeoffs:

68

Tradeoff
Aspect

Schema
Strictness

Tool
Granularity

Tool
Documentation

Best Practices:

Byrddynasty | Agentic Al Strategy

Usability

(Agent UX)

Loose,
permissive
schema
(easier for
LLM to
generate)

Coarse-
grained,
multi-step
tools (fewer
calls)

Short, high-
level
docstrings
(fast context
loading)

Flexibility
(Capability)

Strict, validated

schema
(ensures
correctness)

Fine-grained,
atomic tools
(more

composable)

Detailed,
technical
docstrings
(better tool
selection)

Implementation Guidance

Prioritize Strictnhess. Use
Pydantic/JSON Schema validation
to ensure correctness, even if it
requires more complex prompting
for the TGM.

Prioritize Fine-Grained. Atomic
tools are the building blocks for
dynamic composition. The TGM
should generate small, single-
purpose tools that can be chained
together.

Prioritize Detailed, Semantic
Docstrings. Use vector
embeddings of the docstrings for
semantic discovery, allowing the
LLM to select the right tool without
loading the full, verbose text into
the prompt.

e Meta-Schema Enforcement: Define a strict JSON Schema for the output of the
TGM (the schema of the new tool itself). This ensures that the generated tool

definition is always valid and parsable by the runtime.

e Decoupling: Separate the Tool Generation Module (TGM), the Tool Router/
Registry, and the Tool Execution Environment (TEE) into distinct components.
This modularity enhances security, observability, and maintainability.

e Self-Correction Loop: Implement a feedback loop where if a dynamically generated
tool fails validation or execution, the failure trace and error message are fed back to
the TGM's LLM, prompting it to generate a corrected version of the tool or its

schema.

69

Byrddynasty | Agentic Al Strategy

Common Pitfalls * Schema Hallucination and Non-Compliance: The LLM
generates a tool call or a new tool schema that is syntactically correct but semantically
invalid or non-compliant with the required JSON Schema structure. * Mitigation:
Implement strict, post-generation validation using a robust JSON Schema validator
(e.g., jsonschema library) and Pydantic models. Use few-shot examples of correct
schema generation in the TGM's system prompt.

e Tool Over-Generation (The "Tool Sprawl" Problem): The agent generates too
many redundant or overly specific tools, leading to a bloated tool catalog and
increased cognitive load for the LLM during tool selection.

o Mitigation: Introduce a Tool Catalog Management layer with metrics for tool
usage frequency, semantic similarity clustering, and an automated deprecation
policy. Encourage the TGM to generate generalized, composable tools rather than
highly specialized ones.

e Security Vulnerabilities in Generated Code: Dynamically generated tools often
involve generating and executing code (e.g., Python, shell commands), creating
severe security risks (e.g., arbitrary code execution).

o Mitigation: Enforce strict sandboxing (e.g., using containers or isolated execution
environments) for all generated code. Implement rigorous code review and
static analysis on the generated code before execution, even if performed by the
agent itself.

e Lack of Observability and Debugging: Failures in dynamically generated tools are
hard to trace because the tool's definition and execution are ephemeral and context-
dependent.

o Mitigation: Implement comprehensive tracing and logging for the entire tool
lifecycle: generation, validation, registration, call, and execution. Log the full
generated schema and code for post-mortem analysis.

e Semantic Drift in Tool Descriptions: As the agent self-modifies its prompts or tool
descriptions, the semantic meaning of the tool may drift from its actual functionality,
leading to incorrect tool selection.

o Mitigation: Maintain a clear separation between the tool's functional code and its
semantic description (docstring). Implement a periodic semantic

70

Byrddynasty | Agentic Al Strategy

consistency check that validates the description against the tool's actual input/
output behavior.

e Infinite Self-Modification Loops: The agent enters a recursive loop where it
attempts to fix a perceived flaw in its own logic or toolset, only to create a new flaw
that triggers another fix attempt.

o Mitigation: Implement a finite state machine or a budget/depth limit on self-
modification actions. Require a high-confidence threshold or external human
validation for critical self-edits.

Real-World Use Cases 1. Automated Data Pipeline Generation (Success Story):
* Scenario: A data science agent is tasked with ingesting data from a novel,
undocumented API and transforming it for a specific machine learning model. *
Dynamic Tooling: The agent first uses a "Schema Discovery Tool" to analyze the API's
endpoints. It then dynamically generates a new Python tool, fetch_and_transform_data ,
complete with a Pydantic schema for the API call parameters and a custom
transformation function. This tool is instantly registered and used to complete the
pipeline. * Success: The agent successfully integrates a new data source without human
intervention, demonstrating rapid capability extension and zero-shot adaptation to
a novel interface.

2. Custom Code Interpreter for Novel Libraries (Success Story): * Scenario: A
coding agent needs to use a newly released, niche Python library (e.g., a specialized
graph theory package) that is not in its pre-trained knowledge. * Dynamic Tooling: The
agent reads the library's documentation, generates a set of small, atomic tools (e.g.,
graph_init , find_shortest_path) with precise input schemas derived from the library's
function signatures. It then uses these generated tools to solve the problem. * Success:
The agent exhibits knowledge generalization by translating external documentation
into internal, executable capabilities, effectively extending its own programming
environment.

3. Financial Trading Strategy Self-Optimization (Failure Mode): * Scenario: A
financial agent is tasked with optimizing a trading strategy. It is given a "Self-Modify
Strategy" tool. * Failure Mode: The agent identifies a flaw in its current strategy logic
and dynamically generates a self-modification that introduces a subtle, non-obvious bug
(e.g., a race condition or an incorrect calculation of risk exposure). Because the
validation loop is insufficient, the agent executes the flawed self-modification, leading to

71

Byrddynasty | Agentic Al Strategy

catastrophic trading losses. * Failure: This highlights the critical need for rigorous,
external validation and security sandboxing for self-modification, as the agent's
internal reasoning may not be sufficient to guarantee correctness in high-stakes
environments.

4. Dynamic Configuration Management (Success Story): * Scenario: A DevOps
agent manages a cloud infrastructure where new services are constantly deployed, each
requiring a unique set of monitoring and logging tools. * Dynamic Tooling: When a new
service is deployed, the agent reads its configuration file and dynamically generates a
new monitor_service_X tool, which encapsulates the specific API calls and credentials
needed to check the service's health. * Success: The agent achieves dynamic
configuration management, ensuring that its operational capabilities are always
synchronized with the constantly changing environment, reducing manual configuration
overhead.

Sub-Skill 8.4: The Agent Skills Standard and
Progressive Disclosure

Sub-skill 8.4a: Agent Skills Standard - Anthropic Agent Skills
format, SKILL.md structure, modular skill packaging, progressive
disclosure

Conceptual Foundation The Agent Skills Standard, particularly as exemplified by
Anthropic's implementation, is fundamentally rooted in established software engineering
and cognitive science principles. The core concept is the application of Modularity and
Separation of Concerns (SoC) to the agent's knowledge base and capability set. Each
"Skill" is a self-contained, reusable software component, isolating the logic and
resources required for a specific domain (e.g., PDF processing, web scraping) from the
agent's general reasoning engine. This architecture adheres to the Interface
Segregation Principle (ISP), where the agent only interacts with the minimal, high-
level interface—the Skill's name and description—before committing to a full interaction.

The most critical theoretical foundation is the concept of Progressive Disclosure,
borrowed from user experience (UX) design and applied to the agent's context window.

72

Byrddynasty | Agentic Al Strategy

In UX, progressive disclosure manages cognitive load by revealing information only
when the user needs it. In the agent context, this translates to managing the token
budget. The Skill's Level 1 metadata (name and description) acts as a Semantic
Interface, a lightweight, human-readable contract that allows the LLM to perform high-
level reasoning and tool selection without incurring the token cost of the full
implementation details. This is a direct application of the principle of Lazy Loading to
the agent's operational context, ensuring that only the necessary procedural knowledge
and resources are loaded into the working memory (context window) at the moment of
execution.

This approach also leverages the concept of Externalized Cognition by treating the
filesystem as a form of long-term, external memory. The agent's core LLM is the
working memory, which is expensive and limited. The Skill directory, with its SKILL.md
and auxiliary files, is the externalized, cheap, and virtually unlimited long-term memory.
The bash tool acts as the retrieval mechanism, effectively turning the agent's tool-use
process into a sophisticated, on-demand information retrieval and execution loop. This
architecture shifts the burden from the LLM's internal knowledge and context capacity to
a robust, externalized software environment, enabling the agent to scale its capabilities
far beyond the limits of its initial context window.

Technical Deep Dive The technical foundation of the Agent Skills Standard is the
fusion of a structured file format with a dynamic execution environment. The core
protocol is the agent's ability to interact with a virtualized filesystem using bash
commands. This is a departure from pure function-calling models (like OpenAlI's original
functions API) which rely solely on JSON Schema for tool invocation. In the Agent Skills
model, the tool itself is a directory, and the agent's interaction is a sequence of file
operations and script executions.

The SKILL.md file is the central technical artifact, acting as a structured, human-
readable Interface Definition Language (IDL) for the agent.

SKILL.md Schema Example (Conceptual):

name: file-search-tool
description: Search for files and content within the project directory. Use for finding sj

parameters:
query:
type: string
description: The search term or regex pattern to look for.

73

Byrddynasty | Agentic Al Strategy

scope:
type: string
description: The glob pattern defining the search scope (e.g., "**/*.py").

File Search Tool Usage Guide

Quick Start: Find Python files

To find all Python files in the current directory and subdirectories, use the following c(
" “bash

find . -name "*.py"

Advanced: Grep for a function name

To search for the function calculate_checksum in all Python files, use:

grep -r "def calculate_checksum” --include="*.py

The Progressive Disclosure Protocol operates as follows: 1. Discovery (Level 1):
The agent's system prompt contains the YAML frontmatter (name/description) of all
available skills. The agent uses this semantic information to decide if a tool is relevant.
2. Invocation (Level 2): If relevant, the agent generates a bash command to read
the SKILL.md file (e.g., bash: read /skills/file-search-tool/SKILL.md). The contents of
this file are then injected into the context, providing the agent with the necessary
procedural knowledge and concrete command examples. 3. Execution (Level 3): The
agent then formulates and executes a final bash command, which may call an external
script (e.g., bash: /skills/file-search-tool/scripts/search.sh --query "..."). Crucially,
the script's source code is never loaded into the context; only the script's output
(stdout/stderr) is returned to the agent, minimizing token consumption and ensuring
deterministic execution.

This technical architecture provides a powerful decoupling of the tool's interface (Level
1) from its documentation (Level 2) and its implementation (Level 3). It enables a
highly modular system where tool documentation can be extensive and complex without
penalizing the agent's performance on simple tasks, a critical design pattern for building
scalable, general-purpose agents. The use of bash as the universal execution protocol
makes the system language-agnostic and highly flexible, supporting any executable
script or binary.

74

Byrddynasty | Agentic Al Strategy

Framework and Standards Evidence The Agent Skills Standard represents a
significant architectural evolution from the initial wave of function-calling APIs, primarily

by introducing the concept of progressive disclosure and leveraging the filesystem

as a resource manager.

OpenAl

Function
Feature

Calling
(Legacy)

Tool Definition JSON Schema

(in prompt)
Context Monolithic (All
Management schema loaded)
Execution API Call (JSON
Protocol payload)

Documentation Limited to

description
field
Token Poor (High
Efficiency upfront cost)

Concrete Examples:

Anthropic
Tool Use
(JSON

Schema)

JSON Schema
(in prompt)

Monolithic (All
schema loaded)

API Call (JSON
payload)

Limited to
description
field

Poor (High
upfront upfront
cost)

Anthropic
Agent Skills
Standard

Directory
Structure +
SKILL.md

Progressive
Disclosure (3
Levels)

bash
commands
(Filesystem 1/
0)

Extensive,
modular
Markdown
files

Excellent
(Minimal
upfront cost)

OpenAPI/
JSON Schema

YAML/ISON
(External)

N/A (Pure
Specification)

N/A (Pure
Specification)

External
Documentation

N/A

1. OpenAl/Google Function Calling: These systems rely on a single, comprehensive
JSON Schema object passed in the system prompt. For a tool like create_user(name,
email, role) , the entire schema is loaded: json { "type": "function", "function":

{ "name": "create_user", "description": "Creates a new user in the database.",

"parameters": { ... full JSON Schema .
combined, leading to context bloat for large toolsets.

75

..} } 3} Thisis Level 1 and Level 2 information

Byrddynasty | Agentic Al Strategy

2. Anthropic Agent Skills (SKILL.md): The Agent Skills approach decouples this
information. Only the Level 1 metadata is loaded initially: yaml --- name: user-
management description: Create, update, and delete user accounts. Use when the user
requests changes to the user database. --- The detailed usage instructions, API
endpoints, and complex parameter schemas are contained in the body of SKILL.md
(Level 2) and auxiliary files (Level 3), which are only loaded after the agent decides
to use the user-management skill. This shift from a "schema-first, monolithic"
approach to a "semantic-first, progressively disclosed" architecture is the core
innovation.

3. OpenAPI Integration: The Agent Skills Standard can be seen as a practical
implementation layer on top of an OpenAPI specification. The SKILL.md can contain
the procedural instructions on how to call the API endpoints defined in an external
OpenAPI document, and the Level 3 resources can include the actual YAML/JSON file,
which the agent can read on-demand to construct the final API call. This allows the
agent to leverage the rigor of OpenAPI for API definition while using the flexibility of
Markdown for agent-centric procedural guidance.

Practical Implementation Tool engineers must make critical design decisions when
adopting the Agent Skills Standard, primarily concerning the balance between usability
(for the agent) and flexibility (of the tool).

Key Design Decisions:

1. Granularity of Skills: Should a single skill handle all database operations (database-
manager) or should it be broken down into granular skills (user-create , user-read)?

- Decision Framework: Favor coarse-grained sKkills (e.g., pdf-processing) for
Level 1 discovery, as this minimizes the initial token load. Use the Level 2
SKILL.md to guide the agent through the fine-grained sub-tasks (e.g., "To
extract text, use X; to merge, use Y"). This optimizes for both low discovery cost
and comprehensive capability.

2. Instruction vs. Code: What content belongs in SKILL.md (instructions) versus a
Level 3 script (code)?

- Decision Framework: Place non-deterministic, high-level workflow
guidance in SKILL.md (e.g., "Always validate input before calling the API"). Place
deterministic, complex, or security-sensitive logic in Level 3 scripts (e.g.,

76

Byrddynasty | Agentic Al Strategy

the actual API call logic, data validation functions). This leverages the LLM's

reasoning for planning and the script's reliability for execution.

Usability-Flexibility Tradeoffs:

Tradeoff

Usability (Agent

Experience)

Flexibility (Tool
Engineer)

Best Practice

SKILL.md
Detail

Script
Abstraction

Error
Handling

High detail leads to
better execution
and fewer errors.

High abstraction
(e.g., a single
run.sh script) is
easier to call.

Detailed,
structured error
messages from
scripts are easier
to parse.

High detail
increases Level 2
token cost when
triggered.

Low abstraction
(many small,
specialized scripts)
is easier to
maintain and
debug.

Generic error
handling is faster
to implement.

Keep SKILL.md concise,
focusing on the most common
use cases. Move advanced or
rare workflows to Level 3
auxiliary files.

Use a single, well-documented
entry-point script that accepts
structured arguments, but
ensure the SKILL.md clearly
explains the script's internal
logic and dependencies.

Mandate structured output
for errors (e.g., JSON or XML)
from Level 3 scripts. This is
non-negotiable for agent
reliability.

Common Pitfalls * Pitfall: Contextual Overload in SKILL.md . The engineer includes
too much information in the Level 2 SKILL.md body, causing the token cost to exceed
the optimal threshold (e.g., >5k tokens), effectively negating the benefit of progressive
disclosure. * Mitigation: Enforce a strict token budget for SKILL.md . Use the SKILL.md
as a table of contents and a quick-start guide, aggressively moving detailed API

77

Byrddynasty | Agentic Al Strategy

references, complex examples, and non-essential documentation to Level 3 auxiliary
Markdown files.

e Pitfall: Ambiguous Level 1 Descriptions. The name and description in the YAML
frontmatter are too vague, leading the agent to frequently select the wrong skill
(false positive) or fail to select the correct skill (false negative).

o Mitigation: Descriptions must be verb-centric and include trigger keywords.
For example, instead of "Database Tool," use "Manage user accounts, including
creation, deletion, and password reset. Use when the user mentions 'user,’
'‘account,' or 'database.

e Pitfall: Unreliable bash Execution. Level 3 scripts rely on environment variables,
external network access, or non-standard shell features, leading to non-deterministic
execution in the sandboxed environment.

- Mitigation: Enforce a zero-dependency policy for Level 3 scripts where
possible. All scripts must be self-contained, use standard POSIX commands, and
handle all I/0O via stdin/stdout, ensuring they are robust against changes in the
execution environment.

e Pitfall: Lack of Structured Script Output. Level 3 scripts return unstructured text
(e.g., a long log file) instead of structured data (JSON, XML), forcing the LLM to
waste tokens and compute power on parsing.

- Mitigation: Mandate JSON output for all successful script executions. The
output should include a status field, a data field, and a message field. This
ensures efficient, reliable data transfer back to the agent's context.

e Pitfall: Inconsistent Skill Directory Structure. The engineer deviates from the
standard directory layout (e.g., placing scripts outside the scripts/ folder), making
the skill difficult for other agents or human developers to understand and maintain.

- Mitigation: Use a Skill Linter or a Skill Creation CLI (like Anthropic's skill-
creator) to enforce a canonical directory structure and file naming convention.

78

Byrddynasty | Agentic Al Strategy

Real-World Use Cases The quality of tool engineering, particularly the implementation
of progressive disclosure and modular packaging, is critical in complex, production-
grade agent systems.

1. Use Case: Enterprise Data Analysis Agent:

- Success Story: A well-engineered data-analysis skill is packaged with Level 1
metadata for discovery, a Level 2 SkILL.md detailing the standard workflow (e.g.,
"load data, clean, visualize, report"), and Level 3 resources containing 50+
specialized Python scripts for different statistical tests and a 10MB database
schema file. The agent successfully analyzes a user request, loads only the
SKILL.md and the single required statistical script, and completes the task
efficiently. The progressive disclosure saves the cost and time of loading the 10MB
schema and 49 irrelevant scripts.

o

Failure Mode: If all 50 scripts and the schema were loaded into the context (ad-
hoc approach), the agent would immediately hit the context limit, fail to process
the user's request, or spend an excessive amount of time and tokens reasoning
over irrelevant code and data.

2. Use Case: Multi-Step Software Development Agent:

> Success Story: A developer agent uses a code-generation skill, a testing skill,
and a deployment sKill. Each skill is @ modular directory. The testing skill's
SKILL.md guides the agent to use a Level 3 script (scripts/run_tests.sh) which
executes the tests and returns a concise JISON summary of the results. The agent
uses this structured output to decide whether to proceed to the deployment skill.

o Failure Mode: If the run_tests.sh script returned a raw, multi-page log file
(unstructured output), the agent would have to load the entire log into context,
leading to a high probability of misinterpreting the test results or running out of
context space for the subsequent deployment steps.

3. Use Case: Regulatory Compliance Agent:

o Success Story: A compliance-check sKill is designed to handle different regional
regulations. The Level 1 description is generic. The Level 2 SKILL.md prompts the
agent to first identify the user's region. It then directs the agent to load the
specific Level 3 file (e.g., regulations/EU_GDPR.md Or regulations/US_HIPAA.md). This
modularity ensures the agent is always using the most current and relevant
regulatory text without having to load all global regulations simultaneously.

79

Byrddynasty | Agentic Al Strategy

Conclusion

Semantic Capability and Tool Engineering is the art and science of building the
interfaces through which agents interact with the world. The quality of these tools—their
clarity, robustness, and discoverability—directly determines the capabilities of the
agentic system. By moving from ad-hoc integration to a systematic engineering
discipline, organizations can create a rich ecosystem of reusable, composable, and
semantically meaningful tools. This enables agents to move beyond simple function calls
to complex, multi-step problem-solving, unlocking the full potential of agentic Al

80

	Skill 8: Tool Engineering
	Deep Dive Analysis: Skill 8 - Semantic Capability and Tool Engineering
	Executive Summary
	Sub-Skill 8.1: Function Calling and Tool Definitions
	Sub-skill 8.1a: Designing Clear Tool Schemas - JSON Schema and OpenAPI specifications, input/output definitions, parameter constraints, type safety
	Sub-skill 8.1b: Implementing Robust Error Handling
	Sub-skill 8.1c: Function Calling Protocols - OpenAI Function Calling, Anthropic Tool Use, Google Function Calling, Protocol Differences and Best Practices
	Sub-skill 8.1: Tool Engineering as Interface Design - Semantic Usability and Discoverability

	Sub-Skill 8.2: Dynamic Tool Discovery and Composition
	Sub-skill 8.2a: Tool Registries and Catalogs - Searchable tool catalogs, indexing by capability and domain, metadata standards, versioning
	Sub-skill 8.2b: Semantic Search for Tools - Embedding-based tool discovery, natural language queries for tools, similarity search, relevance ranking
	Sub-skill 8.2c: Tool Composition and Chaining - Composable tool interfaces, multi-step workflows, tool dependencies, orchestration patterns

	Sub-Skill 8.3: Tool UX Design for Agents
	Sub-skill 8.3a: Writing Clear Tool Descriptions - Unambiguous documentation, when-to-use guidance, input/output semantics, agent-oriented writing
	Sub-skill 8.3b: Providing Tool Examples - Example Invocations, Edge Cases, Common Patterns, Learning from Examples
	Sub-skill 8.3c: Optimizing Semantic Altitude: Balancing Specificity and Flexibility, Abstraction Levels, Generalization vs Precision
	Sub-skill 8.3: Dynamic Tool Generation and Agent Self-Modification

	Sub-Skill 8.4: The Agent Skills Standard and Progressive Disclosure
	Sub-skill 8.4a: Agent Skills Standard - Anthropic Agent Skills format, SKILL.md structure, modular skill packaging, progressive disclosure

	Advanced: Grep for a function name
	Key Design Decisions:
	Usability-Flexibility Tradeoffs:

	Conclusion

