Byrddynasty | Agentic Al Strategy

Skill 5: Context Economics

Context Economics and Optimization

Nine Skills Framework for Agentic Al

Terry Byrd

byrddynasty.com

Byrddynasty | Agentic Al Strategy

Deep Dive Analysis: Skill 5 - Context
Economics and Optimization

Author: Manus Al
Date: December 31, 2025
Version: 1.0

Executive Summary

This report provides a comprehensive deep dive into Skill 5: Context Economics and
Optimization. In the world of large language models, context is the most valuable and
expensive resource. Every token included in a prompt consumes computational
resources, increases latency, and incurs direct costs. The 2026 Al strategist must
therefore act as a "context economist," mastering the principles and techniques
required to maximize the value derived from every token while minimizing waste.

This analysis is the result of a wide research process that examined twelve distinct
dimensions of this skill, organized into its three core sub-competencies, plus cross-
cutting and advanced topics:

1. Prefix Caching and KV Cache Management: Leveraging the computational reuse
capabilities of modern inference engines.

2. Context Compaction and Summarization: Techniques for reducing context size
while preserving essential information.

3. Agentic Plan Caching: A novel approach to cache and reuse entire reasoning
structures.

For each dimension, this report details the conceptual foundations, provides a technical
deep dive, analyzes evidence from modern platforms and research, outlines practical
implementation guidance, and provides a rigorous cost-benefit analysis. The goal is to
equip architects and developers with the in-depth knowledge to build high-performance,
cost-effective agentic systems that are economically viable at scale.

Byrddynasty | Agentic Al Strategy

Sub-Skill 5.1: Prefix Caching and KV Cache
Management

Sub-skill 5.1a: Prefix Caching Fundamentals

Conceptual Foundation Prefix Caching is fundamentally rooted in the computer
science principles of Temporal and Spatial Locality and the economic concept of
Marginal Cost Reduction. In the context of transformer-based Large Language Models
(LLMs), the self-attention mechanism requires computing Key (K) and Value (V) vectors
for every token in the input sequence. For a prompt of length L, this computation
scales quadratically with L in terms of attention complexity, and linearly in terms of
memory for the KV cache. The principle of temporal locality suggests that data recently
accessed is likely to be accessed again soon. Prefix caching exploits this by recognizing
that many user requests share a common, long prefix—typically the system prompt,
few-shot examples, or a Retrieval-Augmented Generation (RAG) context. By caching the
pre-computed K and V vectors for this common prefix, the system avoids redundant
computation, effectively transforming a costly, repeated operation into a fast memory
lookup. The theoretical foundation for this optimization lies in the Computational
Economics of LLM Serving. The cost of generating a response is dominated by two
factors: the prefill phase (processing the input prompt) and the decoding phase
(generating new tokens). The prefill phase is computationally expensive due to the
quadratic complexity of attention over the long prompt. Prefix caching directly targets
this prefill cost. From an economic perspective, the system is performing a capital
investment (storing the KV cache in high-speed GPU memory) to reduce the marginal
cost of subsequent requests. The decision to cache is a classic trade-off: the cost of
memory storage versus the cost of re-computation. A prefix is cached if the expected
cost savings from future cache hits outweigh the opportunity cost of the memory
consumed. Furthermore, the concept of Computational State Reuse is central. The
KV cache represents the computational state of the self-attention mechanism after
processing the prefix. This state is deterministic for a given model and prefix. Prefix
caching is a mechanism for persisting and sharing this state across multiple,
independent inference requests. This state reuse is analogous to memoization in
dynamic programming or instruction caching in a CPU, where the result of an expensive
computation is stored to prevent re-execution. The efficiency of the entire LLM serving

Byrddynasty | Agentic Al Strategy

system, therefore, hinges on the effectiveness of the KV cache management, which
must balance the competing demands of maximizing throughput, minimizing latency,
and optimizing GPU memory utilization.

Technical Deep Dive The core mechanism of prefix caching relies on the Key-Value
(KV) Cache inherent to the transformer architecture. During the self-attention
calculation for an input token sequence $X = (x_1, x_2, \dots, x_L)$, the model
computes the Key (K) and Value (V) vectors for each token. These (K_i, V_i)
pairs are stored in the KV cache, which serves as the model's memory for the current
sequence. In the subsequent decoding phase, when generating the next token
x_{L+1}, the attention mechanism only needs to compute the Query (Q_{L+13})
for the new token and attend it against the entire stored KV cache (K_1, \dots, K_L)
and (V_1, \dots, V_L). Prefix caching exploits the fact that if a new request X'
shares a prefix P with a previously processed request X, the KV vectors for the
tokens in P are identical. The implementation uses a specialized data structure,
typically a Trie or a Hash-Trie, to map the token IDs of the prefix P to the memory
location of the corresponding KV cache blocks. When a new request arrives, the system
performs a Prefix Match Lookup in the trie. If a match is found up to token x_k,
the system retrieves the KV cache for $P=(x_1, \dots, x_k)$ and loads it directly into
the GPU memory. The prefill phase then only needs to compute the KV vectors for the
remaining, non-cached suffix $(x_<{k+1%}, \dots, x_L)$, drastically reducing the
computational load. The efficiency of this process is often maximized by memory
management algorithms like PagedAttention, introduced by vLLM. PagedAttention
decouples the logical KV cache from the physical memory layout by storing the KV
cache in fixed-size blocks (pages), similar to virtual memory in operating systems. This
block-based approach allows the KV cache blocks corresponding to a common prefix to
be physically shared by multiple concurrent requests without memory fragmentation.
The scheduler maintains a reference count for each shared block. When a request
finishes, the reference count is decremented, and the block is only freed when the count
reaches zero, ensuring safe and efficient computational state reuse across the entire
serving cluster. This block-sharing mechanism is the technical enabler for high-
throughput, low-latency prefix caching.

Platform and Research Evidence Prefix caching has been rapidly adopted by major
LLM providers and is a central focus of academic research, demonstrating its critical role
in production serving: 1. OpenAI Prompt Caching: OpenAl's API implements
automatic prompt caching, which is transparent to the user and requires no code

Byrddynasty | Agentic Al Strategy

changes. It is designed to automatically detect common prefixes (especially system
prompts and few-shot examples) and reuse the KV cache. This feature is explicitly tied
to their pricing model, offering up to a 90% reduction in input token cost for cached
tokens [7]. The technical implementation likely involves a highly optimized, distributed
hash map for prefix lookup and integration with their custom inference engine to
manage the shared KV cache memory. 2. Anthropic Prompt Caching (Claude):
Anthropic also offers prompt caching, which allows developers to explicitly mark a
portion of the prompt as a "cache key" to ensure reuse. This approach gives the
developer more control over what is cached, which is particularly useful for complex,
multi-turn conversations or agentic setups where the system prompt is long and static.
The documentation emphasizes that the feature is designed to optimize API usage by
allowing resumption from specific prefixes [1]. 3. vLLM and PagedAttention: The
open-source VLLM framework, which introduced the PagedAttention algorithm, is the
technical foundation for many modern prefix caching implementations. PagedAttention
manages the KV cache in fixed-size blocks (pages), allowing the KV cache for a prefix to
be stored in non-contiguous memory blocks. This eliminates memory fragmentation
and, crucially, enables the sharing of these blocks across different requests. vLLM's
Automatic Prefix Caching (APC) is a direct implementation of this concept, using a
trie-like data structure to efficiently map a request's prefix to the corresponding shared
KV cache blocks [3]. 4. KVFlow Research (Agentic Plan Caching): KVFlow is a
research framework specifically designed to optimize agentic workflows, which
inherently involve high prefix reuse (e.g., the prompt for a "tool-use" sub-agent is
repeated many times). KVFlow introduces a workflow-aware KV cache
management system that abstracts the agent's execution as a graph and proactively
manages the cache based on the expected reuse of sub-task prompts, moving beyond
simple request-level caching to a more intelligent, graph-based caching strategy [4]. 5.
Gemini (Google): While specific technical details are proprietary, Google's Gemini API
also features context optimization mechanisms. The general industry trend confirms
that all major providers employ sophisticated prefix caching and KV-cache management
to handle the massive scale and long context windows of their models, often integrating
it with their custom hardware (e.g., TPUs) and scheduling systems.

Practical Implementation Architects must make key decisions regarding the Cache
Granularity, Admission Policy, and Eviction Strategy. The most critical decision is
the structuring of the prompt to maximize the cache hit rate. Best Practice: The
static, lengthy, and frequently-used components (e.g., system instructions, RAG
context, few-shot examples) MUST be placed at the absolute beginning of the prompt to

Byrddynasty | Agentic Al Strategy

form a stable, reusable prefix. The Cost-Quality Tradeoff centers on the use of high-
cost GPU memory for the cache. Storing a large prefix cache increases the cache hit
rate (improving quality/latency) but reduces the available memory for concurrent
requests (reducing overall throughput). A Decision Framework involves calculating
the Utility Score for each potential prefix: $Utility = \text{Expected Hit Frequency}
\times \text{Prefix Length} / \text{Memory Cost}$. Only prefixes with a high utility
score should be admitted. For eviction, a policy like Least Recently Used (LRU) or
Least Frequently Used (LFU), modified to be Utility-Aware, should be employed.
For instance, a short, frequently-used prefix might be retained over a long, rarely-used
one, even if the latter was accessed more recently. Implementation requires a Trie or
Hash-Trie data structure to map the input token sequence to the starting block of the
cached KV state, ensuring an $0(L)$ lookup time, where L is the prefix length. The
entire system must be integrated with the low-level memory manager (like
PagedAttention) to handle the physical sharing of memory blocks.

Common Pitfalls * Low Cache Hit Rate from Minor Prompt Variations: A single
character change, extra space, or minor rephrasing in the prompt prefix will result in a
cache miss, forcing a full re-computation. Mitigation: Implement a normalization layer
(e.g., stripping whitespace, canonicalizing common phrases) before the cache lookup, or
explore Semantic Caching techniques that use embedding similarity rather than exact
string matching. * Cache Invalidation Complexity: If the underlying model or system
prompt is updated, the entire cache of prefixes derived from the old prompt becomes
stale and must be invalidated. Mitigation: Associate a version ID or hash of the system
prompt/model with every cached entry and implement a robust, version-aware eviction
policy. * Memory Fragmentation and Overheads: Storing many small, non-
contiguous KV-cache blocks for prefixes can lead to significant memory fragmentation,
especially in systems without PagedAttention. Mitigation: Utilize advanced memory
management techniques like PagedAttention (VLLM) or ChunkAttention to manage
the KV cache in fixed-size blocks, eliminating fragmentation and improving memory
utilization. * Security and Privacy Leaks: In multi-tenant or multi-user environments,
sharing a prefix cache can inadvertently leak information if one user's prompt prefix is a
substring of another's sensitive data. Mitigation: Enforce strict tenant/user isolation for
cache entries, ensuring that shared prefixes are only drawn from public or non-sensitive
system prompts, or implement cryptographic hashing of the prefix to prevent reverse
engineering. * Over-caching of Low-Utility Prefixes: Caching every unique prefix,
even those that are rarely reused, can quickly fill up the limited GPU memory with
"cold" data, displacing more valuable, frequently-used prefixes. Mitigation: Implement a

Byrddynasty | Agentic Al Strategy

utility-based cache admission and eviction policy (e.g., based on frequency and size)
rather than a simple LRU, ensuring only high-ROI prefixes are retained.

Cost-Benefit Analysis Prefix caching offers a dramatic improvement in the Return on
Investment (ROI) for LLM serving infrastructure by directly attacking the most
expensive part of the inference process: the prompt prefill. The primary performance
metric is the Time-to-First-Token (TTFT), which is dominated by the prefill latency.
By achieving a cache hit, the prefill time is reduced from $0(L"2)$ computation to an
$0(L)$ memory copy operation, leading to TTFT reductions of up to 80% [7]. The cost
modeling is based on the token-level pricing structure used by major API providers. For
a prompt of length L_p and a cached prefix of length L_{cache}, the cost saving
per request is proportional to the compute cost of L_{cache} tokens. If a provider
prices input tokens at C_{in} and cached tokens at C_{cached}, where
$C_{cached} \ll C_{in}$ (e.g., $C_{cached} \approx 0.1 \times C_<{in}$), the cost
reduction is substantial. The economic benefit is quantified by the Cache Hit Rate ($
\eta$) and the Average Cached Prefix Length (\bar{L}_{cache}). The total
cost savings (S) over N requests is given by: $S = N \times \eta \times \bar{L}
{cache} \times (C{in} - C_{cached})$. For internal deployments, the cost is measured
in GPU-hours. By reducing the prefill time, the GPU is freed up faster, increasing the
overall Throughput (Tokens/Second) and reducing the average Queueing Latency.
For example, if a 4096-token system prompt takes 500ms to prefill, and a cache hit
reduces this to 50ms, the GPU can process 10 times more requests per unit of time,
translating directly into a lower amortized cost per generated token. The cost of the
cache itself is the GPU memory consumed, which is a fixed, high-cost resource.
Effective prefix caching ensures this memory is used to store high-utility KV states,
maximizing the economic return on the memory investment.

Real-World Use Cases Prefix caching is critical in production environments where a
large, static context is repeatedly used, leading to significant cost savings and
performance gains: 1. RAG (Retrieval-Augmented Generation) Systems: In a RAG
application, every user query is prepended with a large, retrieved document chunk
(e.g., 4000 tokens) and a static system prompt. If 100 users query the same document,
the system would re-process 400,000 tokens of context. With prefix caching, the 4000-
token context is processed once, leading to a 99% reduction in prefill computation
for subsequent requests and a typical 80% reduction in Time-to-First-Token
(TTFT). 2. Agentic Workflows and Tool Use: Complex agents often use a static
"tool-use" system prompt (e.g., 1000 tokens) to instruct the model on how to use

Byrddynasty | Agentic Al Strategy

external functions. In a multi-step plan, this prompt is sent to the model repeatedly.
Caching this tool-use prefix eliminates the prefill cost for every step, enabling faster
agent execution and reducing the total token cost by up to 50% for the entire
workflow. 3. Customer Service Chatbots with Fixed Persona: A high-volume
customer service bot uses a long, detailed system prompt (e.g., 2000 tokens) defining
its persona, knowledge base, and response style. Since this prompt is identical for
millions of users, caching it is a direct optimization. This results in millions of dollars
in annual cost savings for high-traffic APIs and ensures consistently low latency for
the initial response. 4. Code Generation and Refactoring Tools: Tools that use LLMs
to analyze and refactor code often send the entire codebase (up to the context limit) as
a prefix for every small change. Caching the KV state of the large, static codebase
context allows the model to instantly process small, incremental user requests,
dramatically improving the interactive latency of the coding assistant.

Sub-skill 5.1b: Cache-Friendly Prompt Design

Conceptual Foundation The foundation of cache-friendly prompt design rests on core
computer science principles, primarily caching theory and the architecture of modern
transformer models. At the hardware level, the optimization is rooted in the Key-
Value (KV) Cache, a mechanism within the transformer decoder block that stores the
computed Key and Value tensors for previously processed tokens. During the self-
attention computation for a new token, the model only needs to compute the Key and
Value for that single new token and then attends to all previous tokens by retrieving
their pre-computed KV tensors from the cache. This avoids the computationally
expensive re-computation of attention for the entire prompt history, which scales
quadratically with sequence length in the attention mechanism [3].

The economic principle driving this design is the Principle of Locality, specifically
Temporal Locality (reusing the same data soon) and Spatial Locality (reusing data
near the current data). In the context of LLMs, the "static" portion of a prompt (e.g., the
system instructions, few-shot examples, or RAG context) represents a highly localized
and temporally stable block of computation. By structuring the prompt with this static
content as the prefix, the LLM's inference engine can compute and cache the
corresponding KV tensors once. Subsequent requests that share this identical prefix can
then reuse the cached KV tensors, effectively reducing the input token count for
computation to only the dynamic, uncached portion of the prompt [4].

Byrddynasty | Agentic Al Strategy

This optimization is a direct application of Computational Economics, where the goal
is to minimize the total cost of computation, measured in time (latency) and resources
(token cost, GPU cycles). Since LLM providers typically charge based on the total
number of input tokens processed, caching a long prefix means the user only pays for
the uncached, dynamic tokens and the generated output tokens. The design choice of
"static-first, dynamic-last" is an engineering strategy to maximize the temporal and
spatial locality of the reusable computation, thereby maximizing the economic return
(cost savings and latency reduction) from the underlying KV-cache mechanism [5].

Technical Deep Dive Cache-friendly prompt design is a direct optimization of the
Transformer's self-attention mechanism during the inference phase, specifically
targeting the Key-Value (KV) Cache. In a transformer model, the self-attention layer
computes three vectors for every token in the input sequence: Query (\mathbf{Q}),
Key (\mathbf{K}), and Value (\mathbf{V}). The attention output is calculated as $
\text{Attention}(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = \text{softmax}
(\frac{\mathbf{Q}\mathbf{K} "T}{\sqrt{d_k3}})\mathbf{V}$. When processing a
sequence of length N, the computation of \mathbf{K} and \mathbf{V} for all
N tokens is the most expensive part of the prefill stage, scaling quadratically with
N in terms of memory bandwidth and computation.

Prefix Caching exploits the fact that for a prompt $P = P_{\text{static}} +
P_{\text{dynamic}}$, the \mathbf{K} and \mathbf{V} tensors for
P_{static} are invariant across all requests sharing that prefix. The inference
engine computes and stores the KV tensors for $P_<{\text{static}}$ in a dedicated
memory structure, the KV-Cache. When a new request arrives with the same prefix,
the system performs a prefix match on the token sequence. If a match is found, the
pre-computed KV tensors are loaded from the cache, and the prefill stage only needs to
compute the KV tensors for the much shorter P_{dynamic} portion. This
dramatically reduces the prefill latency and the overall computational load on the GPU

[3].

The implementation of prefix matching often relies on specialized data structures like a
Trie or Radix Tree (e.g., the Hierarchical Radix Cache used in SGLang) to efficiently
store and look up the token sequences of cached prefixes [2]. The cache key is typically
a hash of the token sequence of the static prefix. The static-first, dynamic-last
structure is critical because the attention mechanism is sequential; the KV-cache is built

Byrddynasty | Agentic Al Strategy

token-by-token. If the dynamic content were interspersed with the static content, the
entire sequence would change, forcing a full re-computation and a cache miss.

Furthermore, the concept extends to RAG context optimization. In a RAG pipeline,
the prompt often includes the system instruction, the retrieved documents, and the user
query. A cache-friendly design ensures the system instruction is the static prefix. If the
retrieved documents are also stable (e.g., a "golden set" of documents), they can be
included in the static prefix. If the documents are highly variable, the design shifts to
caching the RAG System Prompt and the RAG Tool-Use Instructions, which are the
most stable and reusable components, while the retrieved text remains the dynamic,
uncached part [4]. This is a technical decision to maximize the length of the stable
prefix based on the application's data variability.

Platform and Research Evidence OpenAI Prompt Caching: OpenAl's API
implements implicit prefix caching. The best practice is the "static-first, dynamic-last"
rule, where the system message and fixed instructions form the cacheable prefix. While
the exact cache key algorithm is proprietary, it is known to be based on the exact token
sequence of the prefix. OpenAl encourages the use of the prompt_cache_key parameter
in some models to provide an explicit, deterministic key for the static portion, allowing
for more reliable cache hits across different user sessions [5].

Anthropic Claude Prompt Caching: Anthropic provides explicit prompt caching
capabilities, allowing developers to reuse large portions of their prompts. Similar to
OpenAl, the core mechanism is prefix caching based on the KV-cache. Anthropic's
documentation explicitly guides users to structure their prompts with the reusable
content (e.g., RAG context, system prompt) at the beginning to allow the system to
resume from a specific cached prefix, significantly reducing the cost and latency of the
prefill step [8].

Gemini Context Caching: Google's Gemini API offers "Context Caching," which is a
form of explicit prefix caching. It allows users to store a large, common chunk of input
(e.g., a large document or a complex system prompt) and reference it in subsequent
requests. This is particularly useful for RAG applications where the same set of
documents is queried repeatedly. The system encourages developers to put large,
common content at the beginning of the prompt to maximize the chance of an implicit
cache hit [9].

10

Byrddynasty | Agentic Al Strategy

KVFlow Research: KVFlow (Key-Value Flow) is a research framework designed for
workflow-aware KV cache management in multi-agent systems [2]. It moves
beyond simple LRU eviction by abstracting the agent execution schedule as an Agent
Step Graph. It assigns a "steps-to-execution" value to each KV-cache entry, guiding a
fine-grained eviction policy. This ensures that KV caches for agents scheduled to run
soon are preserved, dramatically improving cache hit rates and achieving up to 2.19x
speedup in concurrent agent workflows compared to standard prefix caching.

Agentic Plan Caching (APC): APC is a novel test-time memory mechanism that
caches the reasoning structure of an agent [1]. Instead of caching the token prefix, APC
extracts a plan template (a sequence of tool calls or reasoning steps) from a
completed agent execution. For a new, semantically similar task, it reuses the cached
plan, adapting it with the new context. This reduces the need for the LLM to re-generate
the expensive planning steps, leading to cost reductions of over 46% and latency
reductions of 27% in agentic workloads.

Practical Implementation Architects must make key decisions regarding the
separation of static and dynamic content, the RAG context placement, and the
acceptable cost-quality tradeoff. The fundamental decision framework is: Identify the
invariant, place it first, and ensure its key is stable.

Structured Guidance and Decision Frameworks: 1. Static vs. Dynamic Content
Placement: The "Static-First, Dynamic-Last" principle is paramount. The system
prompt, fixed instructions, and few-shot examples must be placed at the absolute
beginning of the prompt. The dynamic content (user query, current chat history turn,
RAG-retrieved documents) must follow. 2. RAG Context Optimization: For RAG, the
retrieved documents are often the longest part of the prompt. If the RAG index is stable
and the same documents are frequently queried, the RAG context should be treated as
a semi-static prefix and placed immediately after the system prompt. If the RAG context
is highly variable per user query, it must be placed in the dynamic section. A key
tradeoff is to cache the RAG System Prompt (the instruction on how to use the
documents) as static, while the Retrieved Documents remain dynamic. 3. Cost-
Quality Tradeoff: The decision to implement an external semantic cache involves a
tradeoff between Cost Reduction and Response Freshness/Accuracy. A high cache
hit rate (low cost) from a semantic cache may return a slightly less accurate or older
response than a fresh LLM call. Architects must set a Semantic Similarity Threshold

11

Byrddynasty | Agentic Al Strategy

(e.g., cosine similarity > 0.95) that maximizes cost savings while maintaining the
required quality of service (Qo0S).

Implementation Best Practices: * Deterministic Keying: The cache key for the
prefix must be a deterministic hash (e.g., SHA-256) of the static token sequence, not
the raw text, to ensure consistency across systems. * Version Control: Version the
static prompt components. If the system prompt is updated, the version humber must
change, which invalidates the old cache key and forces a re-computation of the new
prefix. * Prefix Length Management: Monitor the length of the static prefix. Longer
prefixes yield greater cost savings per hit but consume more cache memory. Eviction
policies must balance the frequency of reuse with the size of the cached prefix.

Common Pitfalls * Ignoring the "Static-First, Dynamic-Last" Rule: Placing
dynamic user input or variable RAG context before the static system prompt or
instructions. This immediately breaks prefix caching, as the cache key (the prefix)
changes with every request. Mitigation: Enforce a strict prompt template where all static
content (system instructions, few-shot examples) is concatenated at the beginning of
the prompt. * Over-reliance on Implicit Caching: Assuming the LLM provider's
implicit caching will handle all optimization. Implicit caching often has short time-to-live
(TTL) or is limited to exact string matches. Mitigation: Implement an explicit,
application-level semantic or exact-match cache layer before the API call to gain control
over keying, eviction, and TTL. * Poor Cache Key Design: Using a cache key that is
too broad (e.g., only the user ID) or too narrow (e.g., the entire prompt including a
timestamp). Mitigation: For prefix caching, the key must be a hash of the static prefix
only. For semantic caching, the key should be the vector embedding of the static or core
intent portion of the prompt. * Inconsistent Tokenization: Using different tokenizers
or tokenization settings between the client and the LLM provider, leading to cache
misses even for identical text. Mitigation: Use the provider's recommended tokenizer or
a compatible open-source alternative to ensure consistent token-level representation for
prefix matching. * Caching Low-Entropy Prompts: Caching prompts that are rarely
or never repeated (e.g., highly unique, one-off queries). This wastes cache memory and
reduces the overall hit rate for high-value prefixes. Mitigation: Implement a minimum
frequency or a cost-benefit threshold before a new prefix is admitted to the cache. *
Cache Invalidation Issues: Failing to invalidate the cache when the underlying static
content (e.g., the system prompt version, the RAG index) changes. This leads to stale,
incorrect responses. Mitigation: Version the static components of the prompt and

12

Byrddynasty | Agentic Al Strategy

include the version hash in the cache key. When the version changes, the old cache
entries are automatically bypassed.

Cost-Benefit Analysis The economic benefits of cache-friendly prompt design are
quantifiable and substantial, primarily revolving around the reduction of input token
costs and inference latency. The cost model is fundamentally driven by the Cache Hit
Rate (HR) and the Prefix Length (L_{prefix}). The
total cost of an LLM call ($\text{C}{ \text{total}}$) can be modeled as $\text{C}
{\text{total}} = \text{C}{\text{input}} \times (\text{L}{\text{prefix}} \times (1 -
\text{HR}) + \text{L}{\text{dynamic}}) + \text{C}{\text{output}} \times \text{L}
{\text{output}}$, where $\text{C}{\text{input}}$ and $\text{C}{ \text{output}}$ are
the per-token costs. A high HR for a long $\text{L}{\text{prefix}}$ directly
minimizes the expensive $\text{L}_<{\text{prefix}}$ term, leading to dramatic cost
savings, often cited in the range of 60% to 90% for high-reuse applications [6].

In terms of performance, the primary metric is Time-to-First-Token (TTFT). The
initial processing of the input prompt (the prefill stage) is a major component of TTFT.
By reusing the cached KV tensors for the prefix, the computational complexity of the
prefill stage is reduced from $O(\text{L}{\text{prompt}}~2)$ to $O(\text{L}
{\text{dynamic}}”"2)$, where $\text{L}{\text{prompt}} = \text{L}{\text{prefix}} +
\text{L}_{\text{dynamic}}$. This non-linear reduction in prefill computation translates
directly into a significant decrease in TTFT and overall latency, often reported as a 2x to
4x speedup [2].

The ROI analysis is straightforward: the investment is the engineering effort to design
and enforce cache-friendly prompt templates and, in some cases, implement an
external semantic cache. The return is the recurring, substantial reduction in API costs
and the improved user experience from lower latency. For applications with high traffic
and a large, stable system prompt (e.g., a customer service bot with a 1000-token
instruction set), the ROI is almost immediate and exceptionally high, making cache-
friendly design a mandatory economic optimization.

Real-World Use Cases 1. Customer Service Chatbots (High-Volume Q&A): A
company deploys an LLM-powered chatbot for first-line customer support. The system
prompt, which includes 2,000 tokens of company policies, tone guidelines, and tool
definitions, is identical for 95% of requests. By implementing prefix caching, the
company achieves a 90% reduction in input token costs for these requests. For a
system processing 1 million queries per day, this translates to hundreds of thousands of

13

Byrddynasty | Agentic Al Strategy

dollars in monthly savings and a 75% reduction in average Time-to-First-Token
(TTFT), significantly improving user experience. 2. Code Generation with Fixed
Context: A developer tool uses an LLM to generate code snippets. The prompt includes
a 500-token static context defining the project's coding standards, dependencies, and
API definitions. When developers repeatedly ask for small functions within the same
project context, the prefix cache is hit. This results in a 60% cost reduction and a 2x
speedup in code generation latency, as the model only processes the 50-token dynamic
request. 3. RAG for Internal Knowledge Base: A financial firm uses RAG to query a
stable set of compliance documents. The RAG system prompt (1,000 tokens of
instructions on how to synthesize and cite documents) is static. The retrieved
documents are dynamic, but the system prompt is cached. This allows the firm to
process complex compliance queries with a 40% reduction in latency and a 30%
reduction in cost compared to sending the full, un-cached prompt on every query. 4.
Agentic Workflow Planning (APC/KVFlow): A multi-agent system for market
analysis uses a fixed, complex planning prompt (3,000 tokens) to determine the
sequence of tool calls (e.g., "Search", "Analyze Data", "Generate Report"). By using
Agentic Plan Caching (APC), the system caches the plan template itself. When a new,
similar market query is submitted, the cached plan is reused, leading to a 46.62% cost
reduction and a 27.28% latency reduction in the planning phase of the agent's
execution [1].

Sub-skill 5.1c: Workflow-Aware Eviction Policies - KVFlow
Research

Conceptual Foundation The conceptual foundation of workflow-aware eviction policies
is rooted in the intersection of caching theory, computational economics, and
graph theory. Traditional caching, such as the widely used Least Recently Used (LRU)
policy, operates on the principle of temporal locality, assuming that data recently
accessed is likely to be accessed again soon. However, in the context of Large Language
Model (LLM) serving, particularly for multi-agent or complex reasoning workflows, this
assumption breaks down. The key-value (KV) cache, which stores the intermediate
attention states, is a scarce resource (GPU VRAM) whose utility is measured by the cost
of a cache miss—the expensive recomputation of the prompt prefix (prefill latency).

Workflow-aware eviction shifts the focus from temporal locality to predictive utility.
The underlying economic principle is to maximize the utility of the limited cache space
by minimizing the expected future cost of recomputation. This is achieved by retaining

14

Byrddynasty | Agentic Al Strategy

the KV blocks that are predicted to be reused earliest. The core theoretical tool for this
prediction is the Agent Step Graph (ASG), an abstraction from graph theory that
models the execution dependencies, conditional branches, and synchronization points
within a complex agentic workflow. The ASG allows the system to move from a reactive,
time-based eviction strategy to a proactive, structure-based one.

The metric derived from the ASG is the steps-to-execution value, which quantifies the
temporal proximity of an agent's next invocation. This metric serves as a proxy for the
opportunity cost of evicting a KV block. A block with a low steps-to-execution value
has a high utility (low opportunity cost of retention) because its eviction will result in an
imminent, costly cache miss. Conversely, a block with a high steps-to-execution value
has a low utility and is a prime candidate for eviction. This framework transforms the
cache eviction problem from a simple time-based queue management task into a
sophisticated resource allocation problem guided by a predictive cost model.

Technical Deep Dive Workflow-aware eviction is fundamentally a mechanism to inject
predictive intelligence into the KV cache management layer. The core technical
components are the Agent Step Graph (ASG), the steps-to-execution metric, and
the priority propagation mechanism within a tree-structured cache. The ASG is a
directed graph where nodes represent agent invocations and edges represent control
flow dependencies (sequential, conditional, or parallel). This graph is dynamically
constructed or pre-parsed from the agent orchestration logic.

The steps-to-execution value (S) is the key data structure for prioritization. For any
agent invocation A, $S(A)$ is defined as the minimum number of execution steps
required to reach A from the current state, or the earliest possible step at which A
will be executed. This value is computed recursively. For a node A with successor
nodes B_1, B_2, \dots, B_n, the calculation depends on the dependency type. For a
sequential dependency, $S(A) = \min(S(B_i)) + 1$. For a conditional branch, $S(A) =
\min(S(B_i)) + 1$. For a synchronization barrier, $S(A)$ is calculated based on the
completion of all predecessors. A smaller S value indicates a higher priority for
retention.

The KV cache itself is typically organized as a tree-structured cache (e.g., a Radix
Tree) to facilitate efficient prefix sharing. Each node in this tree corresponds to a KV
block. The workflow-aware policy propagates the agent-level S value down to the KV
block level. For a KV block K that is a shared prefix for a set of agents $\mathcal{A}
K$, the eviction priority $P(K)$ is set to the minimum of the steps-to-execution values

15

Byrddynasty | Agentic Al Strategy

of all agents in \mathcal{A}_K: $P(K) = \min{A \in \mathcal{A}_K} S(A)$. This
minimum function is crucial: it ensures that the shared prefix is retained as long as the
highest-priority (smallest S) agent still needs it. The eviction policy then simply
selects the KV block with the largest $P(K)$ value (lowest priority) when memory
pressure dictates. This deterministic, predictive mechanism drastically reduces the
randomness and inefficiency of traditional LRU.

Platform and Research Evidence While commercial platforms like OpenAI and
Anthropic implement prompt caching, their publicly disclosed eviction policies are
typically simple and time-based, serving as a baseline for the naive approach. For
instance, OpenAl's prompt caching often uses an inactivity-based policy, clearing caches
after a period of inactivity (e.g., 5-10 minutes) or a fixed maximum retention time (e.g.,
one hour), which is a variation of LRU. The true workflow-aware, predictive eviction is
primarily found in cutting-edge research and specialized serving frameworks.

1. KVFlow Research: This is the primary evidence base. KVFlow introduces the Agent
Step Graph (ASG) and the steps-to-execution metric to guide its eviction policy.
For a shared prefix, the eviction priority is determined by the minimum steps-to-
execution value among all dependent agents, ensuring the prefix is retained as long
as any high-priority agent needs it.

2. NVIDIA TensorRT-LLM (Priority-Based Eviction API): NVIDIA has introduced a
Priority-Based Eviction API in TensorRT-LLM. This is a practical implementation
that allows the LLM deployer to inject external knowledge about the workload (e.g.,
the workflow structure) to influence the eviction decision. This API provides the
mechanism for a system like KVFlow to assign its calculated steps-to-execution
priority to the underlying KV cache blocks.

3. Agentic Plan Caching (APC) / Workflow Orchestrators: Systems designed for
complex agentic workflows, such as those used in enterprise RAG or planning, often
implement a form of session-aware or plan-aware caching. These systems
implicitly or explicitly track the state of the agent's plan (e.g., "Step 3: Tool Call,"
"Step 4: Final Answer Generation") and use this state to pin or prioritize the KV
cache associated with the system prompt and few-shot examples, as these are
critical and static components of the workflow.

4. ForesightKV and NACL: These research efforts demonstrate the evolution towards
learned eviction policies. ForesightKV uses a small prediction model trained to
forecast the utility of a KV block in reasoning tasks, moving beyond deterministic

16

Byrddynasty | Agentic Al Strategy

graph analysis to a data-driven, predictive eviction score. This provides a more
generalized, yet still workflow-informed, approach to context management.

Practical Implementation Architects implementing workflow-aware eviction must
make key decisions across three domains: Workflow Abstraction, Priority
Calculation, and Cache Management. The primary cost-quality tradeoff is between
the overhead of prediction (maintaining the ASG and calculating priorities) and the
gain from reduced cache misses (lower latency and higher throughput).

Key Optimization Decisions: * Granularity of Prediction: Should the prediction be
at the agent level (KVFlow's steps-to-execution) or the individual token/block level
(learned policies)? Agent-level is simpler and lower overhead; block-level is more
accurate but computationally intensive. * Cache Structure: A tree-structured cache
(like a Radix Tree) is mandatory for efficient prefix sharing. The decision is how to
propagate the workflow-aware priority through this tree. The best practice is to use the
minimum priority rule for shared nodes to ensure maximum retention. * Eviction
Trigger: Eviction should be triggered not just by memory pressure, but also by
workflow state changes. For example, a major branch in the ASG being completed
can trigger a re-evaluation of all associated KV blocks.

Decision Framework for Eviction: | Decision Point | Naive (LRU) | Workflow-Aware
(KVFlow) | Cost-Quality Tradeoff | | :--- | :--- | :--- | :--- | | Eviction Metric | Time
since last access | Steps-to-execution (Predicted reuse) | Cost: ASG overhead. Quality:
Near-zero cache misses for predictable steps. | | Shared Prefix Priority | Independent
LRU for each user/session | Minimum priority of all dependent agents | Cost: Increased
complexity. Quality: Maximize reuse of expensive common prefixes. | | Memory
Tiering | Simple GPU VRAM only | Integrated with prefetching (GPU/CPU/NVMe) |
Cost: Data transfer latency. Quality: Vastly increased effective cache capacity. |

Implementation Best Practices: 1. Decouple Control Plane: Implement the ASG
management and priority calculation logic in a separate, CPU-based control plane, using
a low-latency communication channel (e.g., shared memory, gRPC) to pass the priority
scores to the GPU-based KV cache manager. 2. Pinning for Critical Context: Allow for
manual pinning of KV blocks corresponding to the static system prompt or few-shot
examples, overriding the dynamic eviction policy to guarantee their retention. 3. Batch-
Aware Prioritization: In a multi-tenant or batch serving environment, the eviction
policy must also factor in the batch priority and Service Level Objectives (SLOs) of

17

Byrddynasty | Agentic Al Strategy

the request, ensuring that high-priority, low-latency requests have their required KV
blocks retained over best-effort requests.

Common Pitfalls * Pitfall: Relying solely on temporal metrics (e.g., LRU, LFU) for
eviction in agentic workflows. Mitigation: Integrate a predictive, workflow-based metric
like steps-to-execution or a learned utility score to prioritize retention based on future
need, not just past access. * Pitfall: Ignoring the overhead of maintaining the Agent
Step Graph (ASG) and calculating steps-to-execution . Mitigation: Implement the ASG
management and priority calculation as a low-latency, parallelized service, potentially
offloading it to the CPU or a dedicated control plane to avoid adding latency to the
critical path of the LLM inference. * Pitfall: Failing to manage shared prefixes correctly
in a tree-structured cache. Mitigation: Ensure the eviction priority of a shared prefix
node is the minimum (highest priority) of all agents currently depending on it. This
prevents a single low-priority agent from causing the eviction of a prefix critical to a
high-priority agent. * Pitfall: Cache thrashing due to rapid context switching in highly
concurrent multi-agent systems. Mitigation: Implement a hysteresis or pinning
mechanism for high-priority KV blocks, preventing them from being immediately evicted
even if their priority temporarily dips, and use a budget-aware admission control to
stabilize the cache. * Pitfall: Security risks from "cache poisoning" or "eviction attacks"
in multi-tenant environments. Mitigation: Implement strict tenant isolation and
resource quotas, and use a reputation or trust score in the eviction policy to de-
prioritize KV blocks from tenants exhibiting suspicious or adversarial cache usage
patterns.

Cost-Benefit Analysis The economic benefit of workflow-aware eviction is quantified
by the reduction in the Total Cost of Ownership (TCO) for LLM serving, driven by two
primary factors: reduced latency and increased throughput. The core cost metric is the
cost of a cache miss, which is the time and energy spent on recomputing the KV
cache (prefill latency). In a multi-agent workflow, a single cache miss can stall the
entire execution pipeline. KVFlow's workflow-aware policy significantly reduces this cost
by minimizing cache misses.

Quantitatively, KVFlow research demonstrates substantial performance gains. Compared
to a state-of-the-art prefix caching system like SGLang with a hierarchical radix cache,
KVFlow achieves an up to 1.83x speedup for single workflows with large prompts and
an up to 2.19x speedup for scenarios with many concurrent workflows. This speedup
translates directly into higher throughput (more requests processed per second) and

18

Byrddynasty | Agentic Al Strategy

lower per-request latency, which are critical for real-time applications. The ROI is
calculated by comparing the marginal cost of implementing and maintaining the ASG
and the priority calculation (a small CPU/memory overhead) against the significant
reduction in GPU compute time and memory bandwidth consumption from avoided
recomputations. Furthermore, by improving the cache hit rate, the policy increases the
effective GPU memory capacity, allowing more concurrent requests to be served
without expensive KV cache offloading or swapping, thereby maximizing the utilization
of expensive GPU resources. The overall economic evaluation shows that the predictive
intelligence of the workflow-aware policy yields a net positive return by converting
potential recomputation costs into a small, predictable management overhead.

Real-World Use Cases Workflow-aware eviction policies are critical in production
scenarios characterized by complex, multi-step, and multi-agent interactions, where the
cost of recomputation is high and the workflow structure is predictable.

1. Complex RAG Workflows with Multi-Step Reasoning: In a RAG system that
involves a multi-step agent (e.g., Search Agent -> Summarization Agent ->
Refinement Agent), the system prompt and the initial context (e.g., retrieved
documents) are reused across all steps. Workflow-aware caching ensures that the KV
cache for the system prompt and the document context is retained throughout the
entire workflow execution, even if the Search Agent's cache is temporarily inactive.
This can lead to a 30-50% reduction in end-to-end latency by eliminating
redundant prefill steps between agent handoffs.

2. Software Engineering Agents (e.g., Code Generation/Debugging): An agent
that iteratively plans, writes code, executes tests, and debugs (a cyclic workflow) will
repeatedly reuse the KV cache for the project's codebase context and the initial task
description. KVFlow's ASG can model this loop, assigning a consistently high priority
to the core context, preventing the costly re-encoding of the entire codebase context
in each iteration.

3. Financial Modeling and Simulation Agents: Workflows that involve running
multiple parallel simulations or financial models, where each model shares a large
common set of initial parameters or market data. The shared prefix KV cache for this
common data is critical. Workflow-aware eviction, using the minimum priority rule,
ensures this shared context is only evicted when all parallel simulation branches are
complete, maximizing the cache hit rate for the shared data and yielding cost
savings of up to 90% on the shared prefix tokens.

19

Byrddynasty | Agentic Al Strategy

4. Customer Service and Onboarding Agents: An agent guiding a user through a
multi-step onboarding process (e.g., KYC, account setup) where the conversation
history (context) is reused across different sub-agents (e.g., ID verification agent,
form-filling agent). The workflow-aware policy treats the entire onboarding process
as a single graph, ensuring the session context is retained until the final step is
complete, providing a seamless, low-latency user experience.

Sub-skill 5.1d: Platform-Specific Caching Implementations

Conceptual Foundation The foundation of platform-specific context caching is rooted
in classical computer science caching theory, specifically the principle of Locality of
Reference [6]. This principle posits that data recently accessed (temporal locality) or
data near recently accessed data (spatial locality) is likely to be accessed again soon. In
the context of Large Language Models (LLMs), the "data" is the Key-Value (KV) cache
generated during the prefill phase of the self-attention mechanism. When a prompt has
a long, identical prefix (e.g., a system instruction or a Retrieval-Augmented Generation
context), the computation of the KV cache for that prefix is a redundant, fixed cost [7].

The core technical concept is the Key-Value Cache (KV Cache), which stores the
intermediate attention keys (\mathbf{K}) and values (\mathbf{V}) for every
token in the input sequence. The self-attention mechanism requires access to all
previous \mathbf{K} and \mathbf{V} vectors to compute the next token's output.
Context caching works by storing and reusing this KV cache for common prefixes,
effectively transforming the high fixed cost of re-computation into a low, amortized cost
of memory lookup and transfer [8].

From a Computational Economics perspective, context caching is a strategy to
reduce the marginal cost of inference. The cost of an LLM API call is typically
dominated by the input tokens, which require expensive matrix multiplications during
the prefill phase. By caching the KV state, the cost of processing the cached input
tokens is reduced from a high computational cost (GPU FLOPs) to a significantly lower
memory access cost (GPU memory bandwidth). This shift is critical for maintaining
profitability in LLM-as-a-Service platforms, where the marginal cost of serving a request
must be minimized to scale profitably [9]. The economic principle is the Amortization
of Fixed Costs: the one-time high cost of computing the KV cache for a common prefix
is spread across many subsequent requests that share that prefix.

20

Byrddynasty | Agentic Al Strategy

Technical Deep Dive Context caching, at its core, is the reuse of the intermediate
computational state of the Transformer's self-attention mechanism, known as the Key-
Value (KV) Cache [7]. During the prefill phase, the input prompt is processed in
parallel. For each token i in the input sequence, the model computes a Key vector $
\mathbf{K}i$ and a Value vector $\mathbf{V} _i$. These vectors are stored in the KV
cache, which is a tensor of shape $[L \times N{layers} \times N_<{heads} \times
D_{head}]$, where L is the sequence length.

When a subsequent request arrives with a prefix that exactly matches a cached entry,
the system performs a cache lookup using a unique identifier, typically a hash of the
prefix content and relevant metadata (e.g., model version) [12]. If a cache hit occurs,
the system bypasses the expensive $O(L"2)$ prefill computation for the prefix.
Instead, the pre-computed KV cache tensor for the prefix is loaded directly into the GPU
memory. The LLM then only needs to compute the KV vectors for the new tokens, and
the subsequent autoregressive decoding proceeds by referencing the combined (cached
+ new) KV state [8].

The data structure used for efficient prefix matching is often a Trie or a specialized
Hash Map [12]. A Trie allows for fast, token-by-token traversal to find the longest
common prefix between the incoming request and the stored cache entries. This is
crucial for maximizing the cache hit length. The cache mechanics also involve a
sophisticated memory management layer, such as PagedAttention [4], which
virtualizes the KV cache memory. PagedAttention allows the KV cache to be stored in
non-contiguous memory blocks (pages), which are mapped to the logical sequence,
significantly reducing memory fragmentation and enabling efficient sharing of the same
physical KV cache blocks across multiple concurrent requests that share the same
prefix. This sharing mechanism is the key to the economic efficiency of platform-level
caching [4].

The eviction policy is another critical implementation detail. Since GPU memory is
limited, cache entries must be evicted. While simple policies like Least Recently Used
(LRU) are common, more advanced systems use utility-based policies that consider
factors like the size of the cached prefix, the frequency of access (LFU), and the
predicted future utility (Learned Eviction) to maximize the overall economic benefit of
the cache [5]. The entire process is managed by the LLM serving framework (e.g.,
vLLM, TensorRT-LLM) and exposed to the user as a seamless, cost-saving feature.

21

Byrddynasty | Agentic Al Strategy

Platform and Research Evidence The major LLM platforms have adopted prefix
caching as a core economic and performance feature, though their implementations
vary in control and scope:

e OpenAlI Prompt Caching: OpenAl implements an implicit and automatic form of
prompt caching. It automatically detects common prefixes (e.g., system prompts,
RAG context) across requests within a user's account (and potentially across
organizations, depending on policy) and reuses the KV cache [10]. Developers
benefit from reduced latency (up to 80%) and cost (up to 90% for cached tokens)
without any code changes. The mechanism is opaque, focusing on maximizing
economic benefit for the user.

e Anthropic Prompt Caching: Similar to OpenAl, Anthropic offers an implicit prompt
caching mechanism, particularly effective for their long-context models like Claude.
Their documentation emphasizes the ability to "resume from specific prefixes," which
is the functional definition of KV cache reuse [16]. They also provide cost benefits for
cached tokens, incentivizing the use of static, long system prompts.

e Gemini Context Caching (Vertex AI): Google's implementation, particularly on
Vertex Al, offers both Implicit and Explicit Context Caching [17]. Implicit caching
works automatically, but the explicit feature allows developers to programmatically
store a specific context (e.g., a large document) and receive a cache ID. Subsequent
requests can reference this ID, guaranteeing a cache hit and providing greater
control over the cache lifecycle, which is crucial for stateful applications.

e KVFlow Research: KVFlow is a research framework designed for workflow-aware
KV cache management in multi-agent systems [3]. It moves beyond simple LRU
eviction by modeling the agent's execution as a graph. This allows it to proactively
manage the cache, anticipating which KV blocks will be heeded next based on the
agent's plan, leading to higher cache utility in complex, non-linear workflows.

e Agentic Plan Caching (APC): APC is a novel technique that caches the structured
output (the plan) of an LLM agent's reasoning step, rather than the raw input tokens
[18]. In agentic loops, the planning step is often repetitive. APC stores and adapts
these plans, reducing the serving cost of LLM agents by amortizing the cost of
complex reasoning, which is a higher-level form of context optimization.

Practical Implementation Architects implementing context caching must navigate
several key decisions and tradeoffs. The primary decision is between Implicit vs.
Explicit Caching. Implicit caching (like OpenAl's) is zero-effort but offers no control.

22

Byrddynasty | Agentic Al Strategy

Explicit caching (like Gemini's via a cache ID) requires application-level management
but guarantees cache hits for known contexts.

Key Decisions and Decision Frameworks:

Decision . . .
Options Decision Framework
Area
Cache User-level, Privacy/Tenancy Model: Share only non-sensitive,
Scope Organization-level, public system prompts globally; enforce strict user/
Global tenant ID in the cache key for sensitive contexts.
Eviction LRU, LFU, Utility- Workload Analysis: Use LRU for general-purpose,
Policy based (Learned) unpredictable traffic; use LFU or Learned Policies for

highly repetitive, stable workloads (e.g., RAG on a
fixed knowledge base).

Cache Simple Prefix Hash, Freshness/Accuracy: Use a hash of the content and
Key Content Hash + relevant metadata (e.g., model version, system
Metadata prompt version) to prevent serving stale or

incompatible cache entries.

Cost-Quality Tradeoffs:

e GPU Memory vs. Compute Savings: Storing the KV cache consumes expensive
GPU memory. The tradeoff is between the memory cost of a large cache and the
compute cost saved by avoiding re-computation. Optimal point is where the marginal
cost of memory equals the marginal cost of compute saved.

e Latency vs. Freshness: Aggressive caching reduces latency but increases the risk
of serving stale data if the underlying context changes. This is managed by setting
an appropriate Time-To-Live (TTL) or using content-hashing for immediate
invalidation upon change.

Best Practices:

1. Standardize System Prompts: Ensure the system prompt is byte-for-byte identical
across all relevant requests to maximize the cache hit rate.

2. Monitor Cache Hit Rate: Treat the cache hit rate as a critical business metric. A low
hit rate indicates poor prompt standardization or an ineffective eviction policy.

23

Byrddynasty | Agentic Al Strategy

3. Use PagedAttention: Employ memory management techniques like PagedAttention
[4] to minimize memory fragmentation and allow for more efficient utilization of the
cache memory.

Common Pitfalls * Low Cache Hit Rate: Occurs when prompts are highly variable or
lack a standardized prefix. Mitigation: Enforce strict, standardized system prompts and
use content-hashing to identify identical prefixes across users (where privacy allows). *
Cache Invalidation and Staleness: Using a cache with a long Time-To-Live (TTL) for
contexts that frequently change (e.g., real-time data). Mitigation: Implement short,
policy-driven TTLs or use content-based hashing of the context to ensure a cache entry
is only valid for an identical context. * GPU Memory Bloat: The KV cache consumes
significant, non-reclaimable GPU memory, leading to fragmentation and reduced batch
size. Mitigation: Employ advanced memory management techniques like PagedAttention
[4], offload less-frequently used KV cache blocks to CPU memory (KV Cache
Offloading), or use aggressive, utility-based eviction policies. * Security and Privacy
Risks: In multi-tenant environments, improper cache key generation or sharing can
lead to information leakage across users. Mitigation: Enforce strict tenant isolation by
including a unique tenant ID in the cache key hash and ensuring that only non-
sensitive, shared prefixes are cached across organizational boundaries. * Over-
reliance on LRU Eviction: Least Recently Used (LRU) is simple but sub-optimal for
LLM workloads, which often exhibit predictable, non-temporal access patterns.
Mitigation: Explore Learned Eviction Policies or Hotness-Aware Scheduling (HotPrefix)
that use workload characteristics to predict the utility of a cache entry [5].

Cost-Benefit Analysis Context caching fundamentally alters the cost structure of LLM
inference by shifting the dominant cost from computation to memory. The primary
benefit is the reduction of the prefill latency ($T_{prefill}$) and the associated
input token cost. For a prompt of length L, the prefill phase has a computational
complexity of $O(L™2)$ due to the self-attention mechanism. By caching a prefix of
length L_p, the complexity is reduced to $O((L-L_p)~2)$, leading to substantial
latency improvements, often cited as up to 80% for long prompts [10].

The economic evaluation is centered on the Cache Hit Rate (H) and the Cost
Reduction Factor (R). If $C_{uncached}$ is the cost per token for uncached input
and C_{cached} is the cost for cached input, the total cost C_{total} for a request
with prefix length L_p and total length L is: $C_{total} = L_p \cdot C_{cached} +
(L - L_p) \cdot C_{uncached}$. Since C_{cached} is often 10x lower than

24

Byrddynasty | Agentic Al Strategy

$C_{uncached}$ (e.g., OpenAI/Anthropic pricing), the cost savings can reach 90% for
the cached portion [11]. The Return on Investment (ROI) is exceptionally high for
applications with high H, such as chatbots with static system prompts or RAG
systems querying the same document set. The cost is the dedicated GPU memory
required to store the KV cache, which must be carefully managed to avoid reducing the
overall throughput (batch size) of the serving system [12]. Effective caching maximizes

the economic utility of expensive GPU resources.

Real-World Use Cases Context caching is critical in production environments where a
large, static context is prepended to many requests, leading to significant, quantifiable

economic benefits:

1. Retrieval-Augmented Generation (RAG) Systems: In a RAG application, the

retrieved documents (often 5,000-10,000 tokens) are prepended to the user's query.
By caching the KV state of the documents, the system avoids re-processing the
context for every follow-up question. Quantified Benefit: A company using a
10,000-token context for 100,000 queries per day can see a 90% reduction in
input token cost for the context portion, translating to hundreds of thousands of
dollars in monthly savings and a 70% reduction in prefill latency [11].

. Chatbots with Fixed System Prompts: Customer service chatbots often use a
detailed, multi-thousand-token system prompt to define their persona, rules, and
knowledge base. Caching this system prompt's KV state for all users is a high-impact
optimization. Quantified Benefit: For a high-volume chatbot receiving 1 million
requests daily, caching the 2,000-token system prompt can reduce the total compute
time by over 50% and drastically lower the API bill for the cached tokens [10].

. Agentic Workflow Templates: In complex LLM agents (e.g., for code generation or
data analysis), the initial planning phase often involves a fixed, complex prompt that
defines the agent's capabilities and steps. Caching the KV state of this planning
template (as explored in APC) accelerates the start of every agentic task.
Quantified Benefit: A financial analysis agent that uses a 4,000-token planning
prompt can achieve a 50% reduction in the time-to-first-token (TTFT) for new
tasks, significantly improving user experience in interactive agentic applications [18].

. Code Completion/Analysis Tools: When analyzing a large codebase, the initial
context (e.g., the contents of main.py and config.yaml) remains constant across
many small, incremental requests. Caching this codebase context allows for near-
instantaneous processing of subsequent code-completion or refactoring requests.
Quantified Benefit: A developer tool can reduce the latency of context-aware code

25

Byrddynasty | Agentic Al Strategy

suggestions from 500ms to under 100ms, making the tool feel real-time and
improving developer productivity.

Sub-skill 5.1: The Economics of Context and Optimization

Conceptual Foundation The economics of context in Large Language Models (LLMs) is
fundamentally rooted in the concept of scarcity and the computational cost of the
Transformer architecture. Context, which comprises the input prompt and the generated
tokens' history, is a scarce resource because its processing requires significant
computational resources (FLOPs) and occupies a large, non-shareable portion of high-
speed GPU memory (the Key-Value or KV Cache). The cost of processing an input token
is often dominated by the memory bandwidth required to load the model weights and
the quadratic complexity of the self-attention mechanism, making the initial prompt
processing the most expensive part of an LLM call. This economic reality necessitates
optimization, transforming the engineering problem into one of computational
economics: maximizing utility (quality/latency) under a strict budget (cost/memory).

This optimization problem draws heavily from classical caching theory in computer
systems. The core principle is the locality of reference, specifically temporal locality
(reusing the same data soon) and spatial locality (reusing nearby data). In the LLM
context, this translates to the observation that many user requests share a common
prefix, such as a long system prompt, few-shot examples, or a chain-of-thought
instruction. Context optimization techniques like prefix caching are direct applications of
this theory, aiming to store the result of the expensive initial computation (the KV cache
for the prefix) and reuse it upon a cache hit, thereby avoiding redundant computation
and reducing latency. The effectiveness of any context optimization is measured by its
Cache Hit Ratio and the associated reduction in Cost Per Query (CPQ).

The ultimate goal of context economics is to solve a multi-objective optimization
problem: minimizing Cost and Latency while maximizing Quality and Throughput.
These objectives are inherently in conflict, forming the core tradeoff space. For
instance, aggressive caching (high hit ratio) reduces cost and latency but can lead to
serving stale or contextually irrelevant responses, degrading quality. Conversely, a
highly personalized, non-cached context maximizes quality but incurs the highest cost
and latency. The economic solution involves establishing a utility function that weights
these factors based on the application's requirements, such as prioritizing cost reduction
for high-volume internal tools or prioritizing low latency for real-time user-facing

26

Byrddynasty | Agentic Al Strategy

applications. This framework guides the selection of caching policies, eviction strategies,
and the overall context management architecture.

Technical Deep Dive The technical foundation of context optimization is the Key-
Value (KV) Cache within the Transformer's self-attention mechanism. During the prefill
stage (processing the input prompt), the model computes the Key (K) and Value
(V) tensors for every input token. These tensors, which encode the token's context-
aware representation, are stored in the KV Cache. For subsequent token generation (the
decoding stage), the newly generated token only needs to compute its own K and
V tensors and attend to the previously stored K and V tensors in the cache,
avoiding the re-computation of past tokens. The size of the KV cache grows linearly with
the context length and the number of layers, making it the primary consumer of high-
bandwidth GPU memory.

Prefix Caching is a direct exploitation of the KV Cache mechanism. When a new
request arrives, the system first hashes the request's prefix (e.g., the system prompt).
If a match is found in the Prefix Cache, the system retrieves the pre-computed K and
V tensors for that prefix. The model then only needs to compute the K and V
tensors for the new tokens (the user's query) and append them to the cached prefix KV
tensors. This bypasses the most computationally intensive part of the prefill stage,
which is the attention over the long prefix, resulting in significant latency and cost
savings. This is often implemented using a shared memory pool or a distributed cache
store that can be accessed by multiple inference workers.

Efficient management of the KV Cache memory is handled by techniques like Paged
Attention. Traditional KV cache management allocates a contiguous block of memory
for the entire maximum context length, leading to memory fragmentation and waste,
especially when handling a batch of requests with highly variable lengths. Paged
Attention, as popularized by vLLM, treats the KV cache as a sparse resource, allocating
memory in fixed-size pages (similar to virtual memory in an operating system). This
allows the system to share the same physical KV cache pages for identical prefixes
across different requests, maximizing GPU memory utilization and enabling high-
throughput multi-tenancy, which is a critical economic factor for LLM serving.

Beyond exact-match prefix caching, Semantic Caching provides a more flexible
optimization. Instead of requiring an exact token match, semantic caching uses a vector
embedding model to represent the user's query. The system then searches a vector
database for previously processed queries whose embeddings are within a certain

27

Byrddynasty | Agentic Al Strategy

similarity threshold (e.g., cosine similarity > 0.98). If a match is found, the cached
response is returned directly. This technique is essential for capturing the economic
benefit of queries that are semantically identical but syntactically different, further
reducing the number of expensive LLM calls. The implementation requires a fast, low-
latency vector search index (e.g., HNSW) and a robust cache invalidation policy.

Platform and Research Evidence The concept of context economics is evidenced by
its implementation across major LLM platforms and cutting-edge research:

1. Anthropic Prompt Caching / OpenAl Prompt Caching: Both providers offer API-
level prompt caching, which is the most direct application of context economics. They
allow users to designate a portion of their prompt (typically the system prompt and
few-shot examples) as a cacheable prefix. When a subsequent request with the same
prefix arrives, the provider reuses the pre-computed KV cache, resulting in a
significant cost reduction (often 90% off the input token price) and lower latency.
This mechanism is a direct financial incentive for users to adopt efficient context
management.

2. vLLM's Automatic Prefix Caching (APC): In the open-source serving ecosystem,
VLLM implements APC on top of its Paged Attention mechanism. Paged Attention
efficiently manages the KV cache in non-contiguous memory blocks (pages), which is
crucial for multi-tenancy. APC automatically detects shared prefixes across
concurrent requests and links the KV cache pages of the shared prefix to all relevant
requests, maximizing memory utilization and throughput by avoiding redundant
computation across the batch.

3. KVFlow (Workflow-Aware Caching): This research framework specifically
addresses the context economics of multi-agent systems. Agentic workflows often
involve sequential LLM calls where the output of one step becomes the context
(prefix) for the next. KVFlow models this as an Agent Step Graph and uses a
workflow-aware eviction policy. Instead of generic LRU, it prioritizes the retention of
KV cache blocks that are part of the critical path for future agent steps, leading to
higher cache hit rates and better performance in complex, multi-turn reasoning
tasks.

4. Google Gemini / Agent Development Kit (ADK) Context Caching: Google's
ADK documentation highlights the use of context caching for agentic applications.
This is typically a form of semantic caching or prefix caching that ensures the agent's

28

Byrddynasty | Agentic Al Strategy

core instructions and long-term memory (e.g., RAG context) are efficiently reused
across tool-use steps and conversational turns, reducing the cost and latency of
complex agentic reasoning loops.

5. Agentic Plan Caching (APC): Distinct from vLLM's APC, Agentic Plan Caching
focuses on caching the reasoning trace or plan generated by an LLM agent. If an
agent receives a new goal that shares a prefix with a previously executed plan, the
system caches the intermediate steps (the "thought" tokens) and their associated KV
cache, allowing the agent to skip the initial planning phase and jump directly to
execution, saving both tokens and time.

Practical Implementation Architects designing LLM applications must make key
decisions regarding the type and scope of context optimization, balancing the inherent
tradeoff between Cost, Latency, and Quality. The primary decision framework
revolves around the nature of the context:

Optimization Tradeoff .
Context Type Best Practice
Strategy Focus
Static Prefix Exact-Match Cost & Maximize cache lifespan;
(System Prompt, Prefix Caching Latency use deterministic hashing
Few-Shot (KV Cache Reuse) for key generation.
Examples)
Variable Query Semantic Caching Quality & Set a strict similarity
(User Input, RAG (Embedding Freshness threshold (e.g., cosine
Chunks) Similarity) similarity > 0.98) and a
short TTL to manage
staleness.
Multi-Turn KV Cache Throughput Use Paged Attention for
Conversation Management & Memory efficient memory allocation
(History) (Paged Attention, and a history-aware eviction
Eviction) policy (e.g., prioritizing

recent turns).

Cost-Quality Tradeoff Analysis: * Aggressive Caching (High CHR): Leads to
maximum cost reduction and lowest latency. Risk: High risk of serving a slightly
irrelevant or stale response (low quality). Decision: Suitable for high-volume, low-
variability tasks like internal summarization or fixed-function chatbots. * Conservative

29

Byrddynasty | Agentic Al Strategy

Caching (Low CHR): Leads to higher cost and latency. Benefit: Ensures the highest
quality and contextual relevance. Decision: Suitable for high-stakes, low-volume tasks
like legal drafting or complex financial analysis.

Implementation Best Practices: 1. Deterministic Hashing: The cache key for
prefix caching MUST be a deterministic hash (e.g., SHA-256) of the exact token
sequence of the prefix. Any change, even a single space, must result in a new cache
entry to prevent quality degradation. 2. Tenant Isolation: In multi-tenant serving, the
KV cache management system must ensure that cache blocks are strictly isolated by
tenant ID to prevent security and privacy leakage, even if the prefixes are identical. 3.
Tiered Caching: Implement a tiered system: Tier 1 (Fast, Exact-Match Prefix Cache)
for system prompts, and Tier 2 (Slower, Semantic Cache) for variable user queries. This
maximizes the speed of the most common hits while providing a fallback for similar
queries.

Common Pitfalls * Cache Staleness and Invalidation: A common pitfall is serving a
cached response or prefix that is no longer valid due to model updates, system prompt
changes, or underlying data shifts. Mitigation: Implement a robust cache versioning
system tied to the model version and a deterministic hash of the system prompt and
few-shot examples. Use a Time-To-Live (TTL) policy for semantic caches to ensure
periodic re-computation. * Security and Privacy Leakage: In multi-tenant
environments, poorly isolated KV cache blocks can lead to a side-channel attack where
one tenant can infer the system prompt or prefix of another tenant by observing cache
hit/miss timing. Mitigation: Enforce strict tenant-aware isolation for KV cache blocks,
ensuring that shared prefixes are only reused within the same security domain or
tenant. * Overhead of Semantic Matching: Semantic caching requires computing
embeddings for every incoming query and performing a vector similarity search, which
can introduce significant latency and computational overhead if the cache is very large.
Mitigation: Use efficient vector databases (e.g., HNSW index) and implement a two-tier
caching strategy where a fast, exact-match cache is checked before the slower,
semantic cache. * Inefficient Memory Management: Without advanced techniques
like Paged Attention, the KV cache can quickly fragment GPU memory, leading to
underutilization and premature Out-of-Memory (OOM) errors, especially with variable-
length contexts. Mitigation: Adopt memory management systems like Paged Attention
(vLLM) or similar custom kernels that treat the KV cache as a sparse resource and
allocate memory pages on demand. * Ignoring Token Pricing Asymmetry: Focusing
only on latency and neglecting the significant cost difference between input and output

30

Byrddynasty | Agentic Al Strategy

tokens, or between cached and uncached input tokens. Mitigation: Cost modeling must
explicitly incorporate the provider's tiered pricing structure (e.g., cached input tokens
being 10x cheaper) and prioritize caching strategies that maximize the reuse of the
most expensive tokens (typically long system prompts).

Cost-Benefit Analysis The economic benefit of context optimization is quantified by
the reduction in the Total Cost of Ownership (TCO) and the improvement in key
performance indicators (KPIs) like Latency and Throughput. The cost model for an
LLM API call is typically $C_{total} = (T_{input} \times P_<{input}) + (T_{output}
\times P_{output})$. Context optimization, primarily through prefix caching, directly
reduces the effective T_{input} by replacing expensive uncached tokens with
significantly cheaper cached tokens, where $P_{cached_input} \Il P_{input}$. For
major providers, cached input tokens can be up to 90% cheaper than regular input
tokens, making the ROI immediate and substantial.

Key performance metrics for evaluating context optimization include the Cache Hit
Ratio (CHR), defined as the percentage of requests that successfully reuse a cached
prefix, and the Effective Cost Reduction (ECR), which is the percentage decrease in
the average cost per query. A high CHR, particularly for long system prompts, translates
directly to a high ECR. For example, a 2000-token system prompt cached with a 70%
CHR can reduce the input token cost for those requests by over 60%. Furthermore, the
reduction in computation time for the prompt phase (the prefill stage) significantly
lowers the Time-to-First-Token (TTFT), which is a critical latency metric for user
experience.

The economic evaluation involves a break-even analysis for the caching infrastructure
itself. The cost of maintaining the cache (memory, CPU for hashing/lookup, vector
database costs for semantic caching) must be offset by the savings from reduced LLM
API calls. For high-volume applications with repetitive context, the break-even point is
reached quickly, yielding a massive Return on Investment (ROI). In one documented
case, a production application achieved an 86% reduction in LLM inference cost and a
40% reduction in latency by implementing semantic caching for common queries,
demonstrating that context optimization is not just a technical improvement but a
fundamental economic lever for scaling LLM applications profitably.

31

Byrddynasty | Agentic Al Strategy

Real-World Use Cases Context optimization is critical in several high-volume, cost-
sensitive production scenarios, yielding significant, quantifiable economic benefits:

1. Customer Service Chatbots with Complex Instructions: A company deploys an
LLM-powered chatbot that uses a 3,000-token system prompt containing product
catalogs, tone guidelines, and escalation rules. Without caching, every user query
costs the full price of 3,000 input tokens plus the query length. By implementing
Prefix Caching for the system prompt, the company achieved a 75% Cache Hit
Ratio across 1 million daily queries. This resulted in an estimated $150,000
monthly cost saving and a 45% reduction in Time-to-First-Token (TTFT),
significantly improving user experience and making the service economically
scalable.

2. Internal Code Generation and Review Tools: A software development team uses
an LLM to generate code snippets based on a large, static codebase context (e.g.,
5,000 tokens of API documentation). By using Semantic Caching on the user's
request and the surrounding code context, the system avoids re-calling the LLM for
minor variations of previously asked questions. This led to a 60% reduction in LLM
API calls for the tool and a 2x increase in developer throughput due to the
near-instantaneous response time for cached queries.

3. Multi-Step Agentic Workflows (e.g., Data Extraction): An agent is tasked with
extracting data from a document, which involves a fixed sequence of steps: Plan,
Read, Extract, Format. The Plan step's output is a constant prefix for the subsequent
steps. By using Workflow-Aware Caching (KVFlow), the system caches the KV
state after the Plan step. This eliminated the need to re-compute the plan's context
in 90% of the subsequent steps, leading to a 30% overall reduction in the
agent's execution time and a corresponding decrease in the total token count per
task.

4. RAG-Powered Knowledge Retrieval: A financial firm uses a Retrieval-Augmented
Generation (RAG) system where the retrieved documents (context) are prepended to
the user's query. By implementing a Context-Aware Semantic Cache that hashes
both the user query and the retrieved document IDs, the system caches the final
answer for identical or highly similar RAG queries. This resulted in a $0.05 average
cost saving per query and a latency reduction from 3.5 seconds to 0.2
seconds for cached responses, allowing the firm to handle peak query loads without
scaling up its LLM serving infrastructure.

32

Byrddynasty | Agentic Al Strategy

Sub-skill 5.1: Advanced Context Window Management at Scale

Conceptual Foundation The foundation of advanced context management lies in the
intersection of Transformer Architecture, Caching Theory, and Computational
Economics. The core technical challenge stems from the Transformer's self-attention
mechanism, which requires the computation of Key (K) and Value (V) vectors for every
token in the input prompt. This computation is the most resource-intensive part of the
prefill stage, and its cost scales linearly with the prompt length, consuming significant
GPU cycles and VRAM. The concept of KV Caching addresses this by storing the
computed K/V vectors for the prompt, allowing them to be reused for every subsequent
token generated in the decode stage, thus avoiding redundant computation.

From a computer science perspective, this is a direct application of the Principle of
Locality of Reference, a cornerstone of caching theory. By identifying and caching the
"static prefix" (system prompts, few-shot examples) that exhibits high temporal locality
(it is used repeatedly), the system shifts the cost from expensive re-computation (O(N)
complexity) to a fast cache lookup (O(1) complexity). Furthermore, in multi-agent
systems, the challenge extends to managing a shared, distributed state, drawing
parallels to distributed file systems like Coda, where maintaining data coherence and
consistency across multiple consumers (agents) is paramount to prevent logical errors
and redundant work.

Computational Economics provides the necessary decision-making framework. The
context window is treated as a scarce resource with a high marginal cost (both
monetary and latency). Context Budget Allocation is an economic optimization problem:
maximizing the marginal utility (information gain, task success probability) of each
token while minimizing its marginal cost. This necessitates moving beyond simple LRU
eviction policies to utility-driven policies that prioritize context based on its predicted
relevance to the agent's current goal, a concept analogous to dynamic resource
allocation in cloud computing where resources are assigned based on a cost-benefit ROI
model.

Technical Deep Dive Advanced context management is fundamentally a technical
optimization of the Transformer's self-attention mechanism, specifically targeting the
Key-Value (KV) Cache. The KV cache is a dedicated memory structure (typically
VRAM) that stores the pre-computed K and V vectors for the input prompt. For a
sequence of length N, the KV cache requires $2 \cdot N \cdot D_<{head} \cdot
N_{layers}$ memory, where D_{head} is the dimension of the head and

33

Byrddynasty | Agentic Al Strategy

N_{layers} is the number of layers. Prefix Caching works by hashing the static
prefix (e.g., the system prompt) and using this hash as a key to retrieve the
corresponding pre-computed K/V block from a shared cache, effectively replacing the
expensive prefill computation with a fast memory lookup.

For multi-agent systems, the complexity escalates to distributed KV cache
management. Frameworks like KVFlow introduce a workflow-aware cache policy.
Instead of simple LRU, KVFlow uses an Agent Workflow Graph (AWG) to predict the
sequence of context segments (e.g., tool-use instructions, previous observations) the
agent will need. This allows for proactive cache loading and priority-based
eviction, where context segments critical to the next predicted step are assigned a
higher retention priority, even if they were not the most recently used. The data
structure for this is often a Content-Addressable Memory (CAM) indexed by the
context segment's hash and a utility score derived from the AWG.

Streaming Context Updates require a priority-based scheduler at the serving
layer, such as those found in PROSERVE or TokenFlow. When a new context segment
(e.g., a real-time event) arrives, the scheduler assigns it a priority based on its urgency
and its impact on the agent's current task. High-priority updates can preempt the
loading or generation of lower-priority context segments. Technically, this involves a
dynamic adjustment of the K/V cache memory allocation. The new context is tokenized,
its K/V vectors are computed, and they are inserted into the cache, potentially forcing
the eviction of the lowest-priority, lowest-utility K/V blocks to maintain the overall
memory budget. This ensures the LLM's context is always "fresh" and relevant, even
under high-load, real-time conditions. Agentic Plan Caching (APC) adds another layer
by caching the structure of the agent's thought process (the plan) as a template, which
is a high-level data structure that guides the subsequent token generation, further
reducing the computational cost of complex reasoning.

Platform and Research Evidence The concept of advanced context management is
evidenced across major LLM platforms and cutting-edge research:

1. OpenAl Prompt Caching: OpenAl's automatic prompt caching is the most visible
example of Prefix Caching. It provides a 50% cost discount on cached input tokens
and significant latency improvements. The mechanism relies on an exact character
match of the prompt prefix and an internal time-to-live (TTL) eviction policy,
demonstrating a simple yet highly effective economic lever for cost reduction and
throughput increase.

34

Byrddynasty | Agentic Al Strategy

2. Anthropic Claude: Anthropic's approach offers even higher discounts (up to 90%)
but requires explicit control via cache-control headers. This represents a more
advanced form of context budget allocation, where the user explicitly signals the
cacheability and priority of the context, allowing Anthropic to optimize its serving
infrastructure more aggressively based on user intent.

3. KVFlow Research: KVFlow is a framework specifically designed for workflow-
aware KV cache management in agentic systems. It abstracts the agent's
execution schedule as an Agent Workflow Graph (AWG) and uses this graph to
proactively manage the K/V cache. This is a prime example of priority-based
context loading, where the cache manager predicts which K/V segments (e.g., the
tool-use instructions or the plan template) will be needed next and prioritizes their
retention, minimizing cache misses during the agent's execution.

4. Agentic Plan Caching (APC): Proposed in research, APC is a form of test-time
memory that caches and reuses structured plan templates generated by the agent's
planning module. Instead of caching raw tokens, APC caches the abstract, high-utility
structure of the plan, which is a key component of the agent's context. This is a
powerful example of multi-agent context sharing and optimization, as a common
plan template can be shared across multiple instances or agents performing similar
tasks, drastically reducing the "thinking" cost.

5. Google ADK/Gemini: Google's Agent Development Kit (ADK) and related research
on multi-agent frameworks emphasize context-aware multi-agent systems. The
architecture often involves a centralized "LLM Flow" that maintains ordered lists of
processors and manages the context, acting as a central hub for context sharing and
compaction, ensuring that agents operate on a consistent and optimized context
view.

Practical Implementation Architects must make key decisions based on a Cost-
Quality Tradeoff framework. The primary decision is the Context Budget Allocation
Policy: whether to use a simple time-based (TTL), a frequency-based (LFU), or a
utility-based (goal-relevance) eviction policy. For high-throughput, static-prefix
applications (e.g., content moderation), a simple TTL/LRU cache is sufficient. For
complex, multi-agent workflows, a utility-based policy informed by the agent's current
goal (e.g., retaining context segments that match the current tool-use instruction) is
necessary to maximize the quality of the output.

Decision Framework for Context Optimization:

35

Byrddynasty | Agentic Al Strategy

Low-Cost/High-Throughput

Decision Point High-Quality/Agentic Focus
Focus

Caching Simple Prefix Hashing (OpenAl KVFlow/APC (Workflow-aware,

Mechanism style) Semantic Hashing)

Eviction Policy Time-to-Live (TTL) or Least Utility-Based (Goal-Relevance Score)

Recently Used (LRU)

Multi-Agent Separate, independent context Centralized, Versioned Shared
Context windows Context (Coherence Protocol)
Streaming Batch updates, simple append Priority-Based Scheduler (PROSERVE/
Updates TokenFlow)

Best Practices: 1. Canonicalize Prompts: Ensure all static prefixes are byte-for-byte
identical to maximize cache hit rates. 2. Decouple Context: Separate the static,
cacheable context (system instructions) from the dynamic, non-cacheable context (user
input, observations). 3. Monitor Cache Hit Rate: Implement monitoring on the
usage.prompt_tokens_details.cached_tokens metric to track ROI and adjust the caching
strategy if the hit rate drops below a target threshold (e.g., 70%). 4. Use Plan
Caching: For agentic systems, implement APC to cache structured plan templates,
reducing the most expensive part of the agent's computation.

Common Pitfalls * Cache Invalidation Sensitivity: A single character change (e.g.,
a trailing space, a timestamp update) in the static prefix invalidates the entire K/V
cache. Mitigation: Enforce strict canonicalization and versioning of all static system
prompts and few-shot examples. Use a content hash to verify integrity and only update
the cache key when the content hash changes. * Over-caching Low-Utility Context:
Caching long, static prefixes that are rarely reused or have low information density. This
wastes expensive GPU memory (VRAM). Mitigation: Implement a utility-based eviction
policy (e.g., Least Frequently Used (LFU) or a custom policy based on token cost and
reuse rate) instead of simple time-based (TTL) or LRU policies. * Multi-Agent Context
Incoherence: Agents operating on stale or inconsistent views of the shared context,
leading to logical errors or infinite loops. Mitigation: Implement a Context Coherence
Protocol (CCP) that uses a centralized context manager to enforce atomic updates and
versioning of shared context segments, ensuring all agents read the latest, valid state
before execution. * Ignoring the Architecture Tax: Underestimating the exponential
cost increase of multi-agent systems due to redundant LLM calls and context passing.

36

Byrddynasty | Agentic Al Strategy

Mitigation: Adopt Agentic Plan Caching (APC) to cache and reuse structured plans,
and use a Context Budget Allocation framework to limit the total token consumption
per workflow, forcing agents to be token-efficient. * Inefficient Streaming Context
Ingestion: Ingesting high-volume, low-value data streams directly into the LLM context
window. Mitigation: Implement a Priority-Based Filter (PBF) that uses a small, fast
model or a rule-based system to pre-process and filter the stream, only promoting high-
priority, high-utility events to the LLM's active context.

Cost-Benefit Analysis The economic benefits of advanced context management are
quantified through three primary metrics: Cost Per Query (CPQ), First Token
Latency (FTL), and Throughput (QPS). For a typical LLM serving cost model where
$C_{total} = N_{input} \cdot P_{input} + N_{output} \cdot P_{output}$, prefix
caching directly reduces the effective P_{input} for cached tokens by up to 50% (as
seen with OpenAl's model). For a 4,000-token prompt with a 3,000-token cached prefix,
the cost reduction is $0.5 \cdot 3000 \cdot P_{input}$, leading to a significant Return
on Investment (ROI).

The performance gain is even more critical. By skipping the prefill stage's K/V
computation, FTL can be reduced by up to 80%, which is vital for real-time, interactive
applications. This reduction in GPU cycle time per request translates directly into
increased Throughput (QPS), as the GPU is freed up faster to serve the next request.
For a multi-agent system, the Architecture Tax—the cost of redundant LLM calls—can
be modeled as $C_{tax} = \sum_{i=1}"{A} N_{redundant, i} \cdot P_{input}$.
Agentic Plan Caching (APC) and shared context reduce this tax by caching the common
$N_{redundant}$ tokens (the plan template or shared context), making the multi-
agent system's cost scale sub-linearly with the number of agents, rather than
exponentially. The economic evaluation justifies the engineering complexity by
demonstrating that the cost of developing and maintaining the caching infrastructure is
quickly offset by the reduced operational expenditure (OpEx) and the ability to serve a
higher volume of premium, low-latency requests.

Real-World Use Cases 1. High-Volume Content Moderation Pipeline: A platform
processes millions of user-generated posts daily, each requiring a 5,000-token system
prompt detailing moderation rules. By implementing Prefix Caching, the 5,000-token
prompt's K/V computation is cached. With a 90% cache hit rate, the platform saves an
estimated 45% on input token costs and achieves a 60% reduction in prefill
latency, allowing them to increase their moderation throughput by 2x on the same GPU

37

Byrddynasty | Agentic Al Strategy

cluster. 2. Multi-Agent Customer Service Bot: A financial services company uses a
multi-agent system (Triage Agent, Account Agent, Resolution Agent) where all agents
share a 2,000-token Standard Operating Procedure (SOP) context. By using a
Shared Context Manager and Agentic Plan Caching (APC) for common resolution
workflows, they eliminate the need for each agent to load and process the SOP context
independently. This results in a 35% reduction in total tokens consumed per
customer interaction and a 40% faster time-to-resolution due to reduced inter-
agent latency. 3. Real-Time Data Stream Analysis: An industrial IoT monitoring
system uses an LLM agent to analyze a continuous stream of sensor data, requiring the
agent to maintain a context of the last 10 minutes of critical events. By implementing a
Priority-Based Streaming Context system (like TokenFlow), where only high-severity
alerts are prioritized for K/V cache updates, the system ensures the LLM always has the
most critical, real-time context. This prevents context "stale-ness" and allows the
system to maintain a 99.9% uptime for real-time decision-making while keeping
the context window size stable and predictable, avoiding costly context overruns. 4.
Code Generation and Refactoring: A developer tool uses an LLM to refactor code,
where the agent frequently re-reads the project's API documentation (a 10,000-token
static context). Caching this large, static context using a long-TTL Prefix Cache
ensures that the agent's initial prompt cost is only incurred once per session, leading to
a 75% cost saving on the documentation context for subsequent refactoring
queries within the same session.

Sub-Skill 5.2: Context Compaction and Summarization

Sub-skill 5.2a: Hierarchical Summarization Strategies - Multi-level
summarization (per-turn, per-session, per-user), dynamic
granularity selection, compression ratios, quality preservation

Conceptual Foundation Hierarchical Summarization Strategies are fundamentally
rooted in the Principle of Locality of Reference from computer architecture, applied
to the semantic domain of Large Language Model (LLM) context management. Just as a
computer system utilizes a memory hierarchy (registers, L1/L2/L3 cache, RAM, disk) to
manage data access speed and cost, hierarchical context management structures
information based on its semantic locality and temporal utility. The most recent,

38

Byrddynasty | Agentic Al Strategy

high-utility information (e.g., the current user turn) is analogous to the L1 cache—high-
cost (in terms of immediate token space), high-speed, and uncompressed. Older, lower-
utility information is progressively compressed and stored in lower-cost tiers, such as
per-session or per-user summaries, which are analogous to RAM or disk storage.

The theoretical underpinning is further strengthened by Computational Economics,
specifically the concept of Marginal Utility of Information (MU). In a constrained
context window, every token represents a cost (inference latency and API charges) and
a potential utility (improved response quality). Hierarchical summarization is an
optimization problem: maximize the total utility of the context U_{total} subject to a
fixed token budget B. This is achieved by dynamically calculating the marginal utility
of retaining a segment of context C in its raw form versus its compressed form C',
and only performing compression when the Marginal Cost (MC) of the raw form
exceeds the utility loss from compression. The optimal strategy seeks to maintain a high
MU/MC ratio across all context segments, ensuring that the most economically
valuable information is preserved in the most accessible form.

The multi-level structure—per-turn, per-session, per-user—is a direct implementation of
a semantic cache hierarchy. The per-turn level focuses on short-term memory and
high-fidelity detail, often using simple truncation or highly extractive methods. The per-
session level acts as a mid-term memory, where older turns are abstractively
summarized to capture the session's narrative arc and key facts. The per-user level
functions as long-term memory, storing a highly compressed, evolving profile or
knowledge graph of the user's preferences and history. This tiered approach allows for a
non-uniform compression ratio, where the compression ratio R is a function of both
the segment's age and its semantic relevance to the current query, thereby maximizing
the quality preservation of critical information.

Technical Deep Dive The technical implementation of hierarchical summarization
involves sophisticated algorithms and data structures to manage the multi-level context.
The core data structure is often a Context Tree or a Hierarchical Radix Cache (as
seen in systems like KVFlow), where nodes represent context segments at different
levels of granularity (turn, session, user). This tree structure facilitates the efficient
management of shared prefixes, which is crucial in multi-agent or multi-user
environments where many sessions might share a common system prompt or tool-use
instructions.

39

Byrddynasty | Agentic Al Strategy

The process is governed by a Dynamic Granularity Selection Algorithm. This
algorithm operates in three main steps: Relevance Scoring, Compression Decision,
and Context Reconstruction. For a new user query Q, the system calculates a
relevance score $S(Q, C_i)$ for every context segment C_i in the hierarchy using
techniques like Vector Similarity Search (e.g., cosine similarity on embeddings) or
Attention-Based Scoring (using a small, specialized model to predict the attention
weight of C_i on $Q%).

Based on S and the segment's age, a Compression Ratio R_i is determined.
Segments with high S and low age are kept raw ($R_i \approx 1$). Segments with
low S and high age are aggressively compressed ($R_i \ll 1$) using a smaller,
specialized summarization model (e.g., a fine-tuned T5 or a smaller LLM). The decision
is often framed as a knapsack problem, selecting the set of context segments that
maximize $\sum U(C_i)$ while respecting the budget B. Before the final LLM call, the
system reconstructs the prompt by assembling the raw, per-turn, per-session, and per-
user summaries. This process is dynamic: the system may choose to "decompress" a
summary by retrieving the raw turns if the relevance score is borderline, or it may use a
Contextual Retrieval mechanism to fetch only the most relevant sentences from the
summary, a form of lossy compression with selective retrieval.

Cache Mechanics are critical at the per-user and per-session levels. The Key-Value
(KV) Cache for the LLM's attention mechanism is the most expensive resource.
Hierarchical summarization reduces the /length of the prompt, which directly reduces the
size of the KV cache required for the prompt tokens. Furthermore, the use of a
Hierarchical Radix Cache allows for the physical storage of the compressed context
(the summary) to be managed separately from the raw context (the KV tensors). In
KVFlow, for instance, the KV cache for the shared system prompt is stored once and
referenced by multiple sessions, and a workflow-aware eviction policy (guided by an
Agent Step Graph) is used to prevent the premature eviction of these valuable, shared
prefixes, which are essentially a form of high-utility, low-granularity context. This
decoupling of logical context structure from physical KV cache management is key to
achieving high efficiency.

Platform and Research Evidence The concept of hierarchical context management is
evident across major LLM platforms and cutting-edge research, often manifesting as a
form of prefix caching or workflow-aware context segmentation. These

40

Byrddynasty | Agentic Al Strategy

implementations serve as the technical foundation for hierarchical summarization
strategies.

Anthropic Prompt Caching (Claude) implements a form of hierarchical context
management by prioritizing the caching of stable, high-utility context components. Their
documentation indicates a caching hierarchy of tools \rightarrow system $
\rightarrow$ messages [1]. This is a practical application of the economic principle of
caching the most expensive, most frequently reused, and least-changing context first.
The system prompt and tools definitions act as the highest-level, most compressed (in
the sense of being cached and reused without re-computation) context layer, effectively
serving as a per-session or per-user "summary" of the operational constraints.

KVFlow research explicitly addresses the hierarchical nature of context in multi-agent
workflows. KVFlow utilizes a hierarchical radix cache to efficiently manage shared
Key-Value (KV) tensors corresponding to common prefixes (e.g., shared system
prompts or initial conversation turns) [2]. This structure is essential for per-session and
per-user context sharing, as it allows multiple concurrent workflows to reference the
same physical KV cache entries, dramatically reducing memory footprint and re-
computation. Crucially, KVFlow introduces a workflow-aware eviction policy guided by
an Agent Step Graph, which assigns a "steps-to-execution" value to KV nodes. This is
a dynamic granularity selection mechanism based on temporal utility rather than
simple recency (LRU), ensuring that context segments likely to be reused in the next
steps of a complex workflow are preserved.

OpenAlI/Gemini and other commercial LLM providers implicitly leverage hierarchical
context through their prefix caching and KV-cache sharing mechanisms. While the
specific summarization algorithms are proprietary, the ability to cache the KV-tensors
for the initial prompt and reuse them across multiple turns in a conversation is the core
technical enabler for the per-session context layer. Agentic Plan Caching (APC) research,
which focuses on caching the high-level plan or state of an agent's execution,
represents a form of hierarchical summarization at the per-workflow level, abstracting
the detailed steps into a compressed, reusable state.

Practical Implementation Architects implementing hierarchical summarization must
navigate a series of key decisions and cost-quality tradeoffs to ensure economic
efficiency.

41

Decision Area

Byrddynasty | Agentic Al Strategy

Description

Best Practice

Granularity
Definition

Compression
Model Selection

Dynamic
Selection Metric

Context
Reconstruction

How many levels of
summarization are
needed? (e.g., Turn,
Topic, Session, User
Profile)

Which model performs
the summarization?
(e.g., full LLM, fine-
tuned T5, extractive
method)

How is the decision to
compress or retain raw
context made?

How is the final prompt
assembled from the
hierarchy?

Start with a 3-tier model (Turn \rightarrow
Session Summary \rightarrow User
Profile) and add topic-level summarization
only if session length exceeds a critical
threshold (e.g., 50 turns).

Use a smaller, fine-tuned LLM (e.g., a 7B
parameter model) for abstractive
summarization to minimize the marginal
cost of compression while maintaining
quality.

Employ a hybrid metric: Temporal Utility
(age/recency) weighted by Semantic
Relevance (vector similarity to the current
query). Only compress when $Utility_{raw?}
< Utility_{compressed} +
Cost_{compression}$.

Use a Contextual Retrieval layer (e.g.,
RAG) to fetch only the most relevant
sentences from the Session Summary and
User Profile, rather than including the entire
summary block. This ensures dynamic
granularity selection at the sentence
level.

The primary tradeoff is between the cost of compression (upfront cost of running the

summarization model) and the cost of inference (recurring cost of including the
context in every subsequent prompt). The first tradeoff involves the Compression
Ratio (R) and Fidelity. A high compression ratio significantly reduces inference cost

and latency, but increases the risk of semantic loss and subsequent poor response
quality. This is generally acceptable for low-stakes, general chat applications where
occasional factual inaccuracies are tolerable. Conversely, a low compression ratio

maintains high response quality but offers minimal cost savings, which is necessary for
high-stakes applications like legal or medical assistants where accuracy is paramount
and the cost of error is extremely high.

42

Byrddynasty | Agentic Al Strategy

The second major consideration is Management Overhead. A highly granular, dynamic
system—one that recalculates relevance scores and runs a summarization model on
every turn—can incur a management overhead that negates the token savings. The
solution to this is to implement batch summarization, summarizing every N turns
or when the context window is $X\%$ full. Furthermore, architects should use a simple,
fast metric (like recency) for the majority of context decisions, reserving the expensive
vector search and summarization for critical turns or when the context budget is
severely constrained.

Common Pitfalls * Semantic Drift: Over time, successive abstractive summaries lose
critical, low-frequency facts, leading to a summary that is fluent but factually inaccurate
relative to the original conversation. Mitigation: Implement a Knowledge Graph (KG)
Extraction layer alongside the summarization. Key facts (entities, dates, decisions) are
extracted and stored in a structured KG, which is then prioritized for inclusion in the
context over the narrative summary. * Over-reliance on Recency (LRU Eviction): A
highly relevant, but old, piece of information (e.g., the user's initial goal) is compressed
or evicted because it is not recent, leading to a loss of long-term coherence. Mitigation:
Replace or augment LRU with a Utility-Based Eviction Policy (like KVFlow's Agent
Step Graph or a simple vector similarity score threshold). The context segment with the
lowest predicted utility for the next N turns is evicted, regardless of age. *
Summarization Model Quality: Using a cheap or poorly fine-tuned summarization
model introduces errors or hallucinations into the summary, which then poisons the
main LLM's context. Mitigation: Dedicate resources to fine-tuning a small, high-quality
summarizer on domain-specific conversation data. Implement a Summary Quality
Gate using a small classifier or a ROUGE score check against the raw text before the
summary is committed to the cache. * High Management Overhead: The cumulative
latency and cost of vector lookups, summarization calls, and context reconstruction
logic exceed the savings from reduced inference tokens. Mitigation: Employ
Asynchronous Summarization (running the summarization model in the background
after the user receives a response) and use a Cost-Benefit Threshold to only trigger
summarization when the expected token savings over the next N turns are
guaranteed to exceed the summarization cost by a factor of X. * Contextual
Retrieval Failure: The retrieval mechanism (RAG) fails to pull the correct sentence
from the compressed summary, resulting in a partial or misleading context. Mitigation:
Use Redundant Indexing (e.g., index the raw text, the summary, and the KG facts)
and implement a Multi-Stage Retrieval process that queries all three layers before
final context assembly. * Compression Ratio Miscalibration: The compression ratio is

43

Byrddynasty | Agentic Al Strategy

too aggressive, leading to an unacceptably high rate of factual errors in the final LLM
output. Mitigation: Calibrate the compression ratio R against a measurable quality
metric (e.g., a custom F1 score for fact retention) in an A/B test environment. Define a
maximum acceptable quality degradation ΔQ_{max} and ensure R is set such
that $\Delta Q < \Delta Q_{max}$.

Cost-Benefit Analysis The economic justification for hierarchical summarization is
quantified by analyzing the reduction in Total Cost of Ownership (TCO) for LLM
inference. The TCO is primarily driven by the Input Token Cost ($C_<{in}$) and the
Inference Latency (L), which dictates the required GPU capacity. The core metric is
the Context Compression Ratio (CCR), defined as $\text{CCR} =
\frac{\text{Tokens}{\text{raw} } }{\text{Tokens }{\text{compressed}}}$. A typical
production system aims for a CCR of $5:1$ to $10:1$ for long-running sessions. If a
raw 8,000-token conversation is compressed to an 800-token summary (CCR of 10:1),
the immediate cost saving on the input prompt is 90%.

The Cost Model must account for the upfront cost of summarization: $$ \text{Total
Cost per Turn} = \text{Cost}{\text{inference}} + \frac{\text{Cost}
{\text{summarization}} }{\text{Turns per Summary}} $$ Where $\text{Cost}
_{\text{summarization}}$ is the cost of running the summarization model on the raw
text, and Turns per Summary is the batching factor. For a system with a
$10:1$ CCR and a batching factor of 5 turns, the ROI is positive if the cost of
summarizing 5 turns is less than the cost of inferring 40,000 raw tokens (5 turns $
\times$ 8,000 tokens/turn) minus the cost of inferring 4,000 compressed tokens. In
practice, using a smaller, cheaper summarization model (e.g., a 7B model for
summarization vs. a 70B model for inference) ensures a rapid and substantial Return
on Investment (ROI), often yielding a net cost reduction of $40-60\%$ for long-
context applications. Furthermore, the reduced prompt length directly translates to
lower Time-to-First-Token (TTFT) and higher Throughput (Tokens/Second),
which reduces the required GPU cluster size, providing a significant capital expenditure
(CapEx) saving.

Real-World Use Cases 1. Enterprise Customer Support Bots: A bot handles a
customer issue over a week, spanning multiple sessions. The per-session summary
captures the current state of the ticket, while the per-user profile stores the customer’s
history and preferences. This allows the bot to maintain coherence and personalization
without passing the full, raw transcript of all past sessions. Quantified Benefit: A

44

Byrddynasty | Agentic Al Strategy

major financial institution reported a 55% reduction in average token cost per
resolved ticket and a $30\%#$ increase in first-contact resolution rate due to improved
context quality.

1. Multi-Agent Software Development Workflows: In a "DevOps Agent" scenario, a
team of specialized agents (e.g., Planner, Coder, Debugger) collaborate on a task.
The Agentic Plan Caching (APC) acts as the highest-level summary, storing the
overall goal and current plan state. The per-turn context is the current code block or
error log. Quantified Benefit: Research on agentic workflows using hierarchical
context management (like KVFlow) demonstrated up to $2.19\times$ speedup in
end-to-end workflow completion time by efficiently sharing and reusing the cached
plan context.

2. Personalized Education and Tutoring Systems: A tutoring LLM tracks a student's
progress over a semester. The per-topic summary captures the student's mastery
level and common misconceptions for a specific subject (e.g., "Calculus I"). The per-
session summary tracks the current lesson's progress. Quantified Benefit: A
leading EdTech platform reduced the average latency for complex, multi-turn
questions by 40% and saw a 15% improvement in student retention scores
due to the system's ability to recall long-term learning gaps.

Sub-skill 5.2b: Sliding Window with Summarization - Maintaining
Detailed Recent History, Summarizing Older Interactions, Window
Size Optimization, Recency vs Completeness Tradeoffs

Conceptual Foundation The conceptual foundation of the Sliding Window with
Summarization (SWS) technique is rooted in the intersection of computer systems
memory management, caching theory, and computational economics. At its
core, the LLM context window functions as a highly constrained, high-cost memory
cache. The model's inherent statelessness necessitates that all relevant conversational
history be explicitly passed as input tokens, which are priced and computationally
expensive to process. The context window limit, L, acts as a hard capacity constraint
on this cache.

From a caching theory perspective, the technique is a sophisticated lossy cache
eviction policy. The recent, high-fidelity portion of the conversation is the active cache
(analogous to an L1 cache), which is managed by a simple First-In, First-Out (FIFO)

45

Byrddynasty | Agentic Al Strategy

or Least Recently Used (LRU) policy. When a message is "evicted" from this active
window, it is not simply discarded (the naive approach). Instead, it undergoes a process
of lossy compression via LLM-based summarization. The resulting summary is a
highly compressed, lower-fidelity representation of the evicted data, which is then re-
inserted into the context as a persistent, compressed memory block (analogous to an
L2 cache or disk swap). This hybrid approach aims to maximize the contextual hit
rate—the probability that necessary information is present—while minimizing the total
token cost.

The economic justification is framed by computational economics and the token
economy. The cost of an LLM interaction is a direct function of the input token count,
$C_{total} = C_{input} \times T_{input} + C_{output} \times T_{output}$. The
summarization step is an investment—an additional, one-time cost $C_{summary}$
(for the LLM call to generate the summary). This investment is justified by the resulting
reduction in recurring operational cost ($T_<{input}$) in all subsequent turns. The
optimization problem is to find the optimal window size, k, where the marginal cost of
summarization is offset by the cumulative marginal savings from a persistently smaller,
yet contextually complete, input prompt. This explicitly models the recency vs.
completeness tradeoff as an economic decision.

Technical Deep Dive The Sliding Window with Summarization (SWS) technique
operates as a hybrid memory architecture designed to maintain conversational
coherence while enforcing a strict token budget. The implementation relies on specific
data structures and a multi-step, conditional algorithm to manage the context lifecycle.
The primary goal is to perform lossy compression on the least-recently-used (LRU)
context segments before they are fully evicted, thus preserving semantic information.

The core data structures are a Circular Buffer or Deque for the Active Window Buffer
(AWB) and a simple String for the Cumulative Summary (CS). The AWB holds the most
recent, high-fidelity messages, allowing for $O(1)$ insertion and eviction, which is
critical for low-latency conversational turns. The CS acts as the long-term, compressed
memory. The overall context C sent to the LLM is a concatenation of the CS and the
AWB: $C = \text{CS} \oplus \text{AWB}$. The maximum context length L_{max} is
a fixed constraint, and the system dynamically adjusts the size of the AWB to ensure
$T(C) \le L_{max}$, where $T(\cdot)$ is the token count function.

The Sliding Window Summarization Algorithm (SWS-A) is triggered on every new
turn N. The process involves a Token Check to calculate the projected token count,

46

Byrddynasty | Agentic Al Strategy

followed by an Eviction Trigger if the limit is exceeded, moving the oldest message(s)
from the AWB to an Eviction Buffer (EB). The critical step is the Summarization
Call, where the content of the EB is concatenated with the current CS and sent to a
secondary LLM call (often a cheaper, faster model) with a prompt instructing it to
generate a new, updated summary. This is the compression step. The output becomes
the new CS, and the final prompt is constructed as $C_<{final} = \text{System Prompt}
\oplus \text{CS}{new} \oplus \text{AWB}{new} \oplus \text{New Message}$.

A critical optimization involves the Key-Value (KV) Cache management. Since the CS
is static between summarization calls, its attention keys and values can be computed
once and stored in the KV Cache. On subsequent turns, the system only needs to
compute the KV cache for the new message and the small AWB. The full context's KV
cache is then reconstructed by prepending the cached CS KV-state to the AWB's KV-
state. This KV Cache Pre-filling significantly reduces the latency and computational
cost of the attention mechanism, as the $O(N~2)$ complexity of self-attention is only
applied to the small AWB, while the long-term memory (CS) is retrieved in $0(1)$ time
from the cache. This transforms the cost of processing the long-term memory from a
quadratic function of its length to a near-constant lookup cost.

Platform and Research Evidence The Sliding Window with Summarization (SWS)
pattern is a core technique employed across major LLM platforms and is a subject of
active research, often under the guise of "context compaction" or "memory
management."”

Anthropic's Context Compaction: Anthropic's engineering blog explicitly discusses
context compaction for long-running agents, which is a direct implementation of
SWS. When the agent's interaction history approaches the context window limit (e.g.,
95%), the system triggers a summarization of the older trajectory, effectively
compressing the past into a concise memory block that is prepended to the active
context. This allows their agents, such as those running in Claude Code, to maintain
long-term coherence without hitting the hard token limit.

OpenAl's Memory Feature: While OpenAl's public-facing "Memory" feature for
ChatGPT is a more complex, RAG-like system, the underlying mechanism for
maintaining coherence in a single, long chat session often relies on a hidden form of
SWS. Community discussions and reverse-engineering efforts suggest that a
conversation's history is periodically summarized and injected into the prompt to

47

Byrddynasty | Agentic Al Strategy

maintain continuity, especially when the conversation spans multiple turns, preventing
the model from "forgetting" key user preferences or facts established early on.

KVFlow Research: The KVFlow framework, designed for efficient prefix caching in
agentic workflows, is highly complementary to SWS. SWS generates a static summary
prefix (the Cumulative Summary, CS) that is prepended to the active window. KVFlow's
strength lies in efficiently caching the Key-Value (KV) states of this static prefix. By pre-
calculating and storing the KV cache for the CS, KVFlow ensures that the computational
cost of attending to the long-term memory is amortized and near-constant, rather than
being re-calculated on every turn, thus accelerating the SWS-A's inference step.

Agentic Plan Caching (APC): In agentic systems, the agent's internal "Plan" or
"Scratchpad" often serves as a functional equivalent of the summary. The agent's past
actions and observations are condensed into a structured plan (a form of
summarization) which is then prepended to the context for the next decision-making
step. This ensures that the agent's long-term goals and past failures/successes are
preserved without requiring the full, raw history of every tool call and observation,
optimizing the context for high-level reasoning.

Practical Implementation Architecting a robust SWS system requires navigating a
series of critical design decisions and cost-quality tradeoffs.

Key Optimization Decisions: 1. Window Size (L_{window}): The size of the
active, high-fidelity window. A larger L_{window} improves immediate coherence but
increases the token cost per turn and reduces the total conversation length before
summarization is triggered. Optimization involves finding the sweet spot where the
marginal cost of the window size is balanced by the marginal gain in conversational
quality (e.g., measured by a coherence metric). 2. Summarization Model Selection:
Using a smaller, cheaper, and faster LLM (e.g., a highly optimized open-source model or
a lower-tier commercial model like GPT-3.5 Turbo) for the summarization step, while
reserving the larger, more expensive model (e.g., GPT-4) for the final response
generation. This is a direct application of the Substitution Principle in computational
economics. 3. Trigger Mechanism: Deciding when to summarize. The most robust
trigger is token-count based, firing when the active window plus the new message
exceeds a predefined threshold, $L_{trigger}$. A simpler, but less precise, method is
turn-count based (e.g., summarize every 10 turns).

48

Byrddynasty | Agentic Al Strategy

Cost-Quality Tradeoffs: | Tradeoff Dimension | High Quality (High Cost) | High
Efficiency (Low Cost) | | :--- | :--- | :--- | | Window Size | Larger L_{window}
(e.g., 80% of L_{max}) | Smaller L_{window} (e.g., 50% of L_{max}) | |
Summarization Model | Primary LLM (e.g., GPT-4) | Secondary, Cheaper LLM (e.qg.,
GPT-3.5) | | Summarization Frequency | Low (Summarize only when necessary) |
High (Summarize aggressively) | | Summary Fidelity | Abstractive, detailed, multi-
paragraph | Extractive, bullet-point list of facts |

Implementation Best Practices: * Asynchronous Summarization: The
summarization call should be executed asynchronously in the background after the user
receives the response, minimizing perceived latency. * Structured Summary Output:
Prompt the summarization model to output a structured format (e.g., JSON or a specific
Markdown format) to ensure easy parsing and injection into the main prompt. *
Summary Prompt Engineering: The summarization prompt must explicitly instruct
the model to preserve key entities, facts, and user preferences, and to avoid introducing
new information (hallucination).

Common Pitfalls * Summary Hallucination and Drift: The summarization LLM can
introduce errors or subtly alter facts, leading to a cumulative drift in the long-term
memory. Mitigation: Implement a self-consistency check where the summary is
briefly reviewed by the primary LLM or a smaller, fact-checking model before being
committed to the Cumulative Summary. * Over-Summarization (Loss of
Granularity): Summarizing too frequently or too aggressively can compress away
critical, nuanced details that may be needed later. Mitigation: Optimize the window
size (L_{window}) to be as large as the cost model allows, ensuring that the most
recent, high-fidelity context is preserved. * Cost Spikes from Frequent
Summarization: If the summarization trigger is poorly tuned (e.g., based on turn
count instead of token count), frequent summarization calls can negate the token
savings, especially if the summarization model is expensive. Mitigation: Use a token-
based trigger and ensure the summarization model is significantly cheaper than the
primary model. * Summary Position Bias: LLMs often exhibit a recency bias or
position bias, where information at the beginning or end of the context is weighted
more heavily. Placing the summary at the very beginning can lead to over-reliance on
compressed, lower-fidelity information. Mitigation: Experiment with the summary's
position, often placing it after the system prompt but before the active window, or using
a specific prompt instruction to balance the weight given to the summary and the active
window. * Failure to Update Summary Incrementally: If the system attempts to

49

Byrddynasty | Agentic Al Strategy

summarize the entire history every time, the summarization cost will grow linearly,
defeating the purpose. Mitigation: The summarization must be incremental: the LLM
is prompted to summarize the newly evicted messages and merge that with the existing
Cumulative Summary.

Cost-Benefit Analysis The SWS technique provides a quantifiable economic advantage
by decoupling the total conversation length from the recurring input token cost. The
core economic benefit is realized when the cumulative cost of the naive approach
(linearly increasing cost) exceeds the cumulative cost of the SWS approach (stable,
capped cost). The SWS approach maintains a stable, predictable cost per turn
($C_{turn} \approx \text{constant}$), whereas the naive approach has a linearly
increasing cost. The Return on Investment (ROI) is the total token cost saved by
using the compressed summary instead of the raw history, minus the cost of generating
the summary. For a conversation of N turns, the total savings are substantial, as the
input cost is capped, not linear.

The cost model for SWS is $C_{turn} = C_{input} \times (T_{window} +
T_{summary}) + C_{output} \times T_{output} + C_{summary_call}$ (where
$C_{summary_call}$ is the amortized cost of the summarization step). The primary
performance metric is Token Cost Reduction (TCR), which is the percentage
reduction in input tokens compared to a full-history approach. For very long
conversations, TCR typically approaches $\approx 1 - (L_{window} + L_{summary}) /
L_{max}$. Secondary metrics include Latency Overhead (which should be near zero
due to asynchronous summarization) and a Coherence Score (a quality metric) to
ensure the compression is effective. This framework allows architects to precisely tune
the L_{window} parameter to maximize the ROI while maintaining a target quality
threshold.

Real-World Use Cases The SWS pattern is critical in any application requiring long-
term, stateful interaction with an LLM, where cost and latency are major concerns.

1. Enterprise Customer Support Bots (Quantified Savings): A large financial
institution deploys an LLM-powered support bot. Conversations average 50 turns.
Without SWS, the input context grows to 10,000 tokens. With SWS ($L_{window}
=2000, L_{summary}=500%), the input context is capped at 2,500 tokens. Cost
Savings: A 75% reduction in input tokens per turn after the initial phase. This
translates to millions of dollars in annual API cost savings for high-volume, long-
duration support channels.

50

Byrddynasty | Agentic Al Strategy

2. Long-Running Agentic Workflows (Performance Improvement): An Al agent
is tasked with a multi-step, week-long project (e.g., "Research and draft a market
entry strategy"). The raw history of observations and tool calls would quickly exceed
$100,000% tokens. SWS, applied to the agent's scratchpad, compresses the history
into a 4,000-token summary of key findings and next steps. Performance
Improvement: The agent's decision-making latency is reduced by over 60%
because the model only attends to a small, relevant context, enabling faster iteration
and completion of the complex task.

3. Personalized Chatbots/Companions (Coherence and Cost): A personalized
companion app needs to remember user preferences, family details, and past
interactions over months. SWS ensures that the core facts (the summary) are always
present, while the most recent conversation (the window) is high-fidelity. Benefit:
High conversational coherence and personalization are maintained indefinitely, with a
predictable, low token cost per turn, making the service economically viable for
continuous use.

Sub-skill 5.2c: Semantic Compression Techniques - Entity
Extraction for Compression, Removing Redundancy, Preserving
Critical Information, Lossy vs Lossless Compression

Conceptual Foundation Semantic compression is fundamentally rooted in
Information Theory, specifically the concept of source coding (or data
compression). The core idea, inspired by Claude Shannon's work, is that redundancy in
a message can be removed to represent the same information with fewer symbols. In
the context of Large Language Models (LLMs), the "message" is the input prompt, and
the "symbols" are the tokens. Natural language is inherently redundant, a phenomenon
often explained by Zipf's Law, which suggests a small number of words account for a
large portion of usage. Semantic compression exploits this redundancy by transforming
the long, verbose input into a shorter, information-dense representation, akin to a lossy
compression algorithm where the "loss" is the removal of stylistic or non-essential
tokens, while the "meaning" (semantics) is preserved.

The necessity for this technique arises from the computational economics of the
Transformer architecture. The self-attention mechanism, which is the computational
bottleneck, scales quadratically ($O(N~2)$) with the input sequence length (N). This
quadratic cost translates directly into increased latency, higher memory consumption

51

Byrddynasty | Agentic Al Strategy

(specifically for the Key-Value (KV) cache), and ultimately, higher operational costs per
query. Semantic compression acts as an economic lever by reducing the input token
count (N) before it hits the quadratic-cost attention layer. By reducing N by a factor
of C (the compression ratio), the computational cost is reduced by a factor of $C"2$,
yielding a non-linear economic benefit.

Furthermore, semantic compression is a form of caching theory applied to the context
window. Instead of caching raw tokens (like prefix caching), it caches the semantic
essence of the context. When a long context is compressed, the resulting summary acts
as a highly efficient, semantically-aware cache entry for the original document. This
allows the LLM to "remember" the core facts and themes of a massive document
without incurring the $O(N~2)$ cost of processing all the original tokens, effectively
extending the model's working memory beyond its physical context window limit. This is
a critical distinction from traditional data compression, as the goal is not perfect bit-
level reconstruction, but perfect semantic fidelity for the downstream task.

Technical Deep Dive Semantic compression is a multi-stage process that leverages
algorithms and data structures to intelligently reduce token count. The most robust
implementations follow a Divide-and-Conquer strategy. The "Divide" phase, known as
Topic-Based Chunking, begins by representing the long input text as a weighted
graph. Each sentence or small block of text is a node. The edges between nodes are
weighted by their semantic similarity, typically calculated using the cosine similarity
of their embeddings (e.g., from a pre-trained sentence transformer like MiniLM). A
clustering algorithm (e.g., spectral clustering or a community detection algorithm) is
then applied to this graph to identify dense subgraphs, or cliques, which correspond to
semantically coherent topics. This ensures that the text is segmented into chunks that
are mutually exclusive in topic but internally cohesive.

The "Conquer" phase involves Independent Compression. Each topic-based chunk is
passed to a smaller, specialized LLM or a sequence-to-sequence model (e.g., a fine-
tuned T5 or BART) for summarization. This is the lossy step, where the model
generates a shorter text that preserves the core meaning. Crucially, the process often
includes an Entity Extraction step, where Named Entity Recognition (NER) is run on
the original chunk to identify critical information (names, dates, figures). These entities
are then explicitly injected into the prompt for the summarization model, or
concatenated with the resulting summary, ensuring that critical facts are preserved,
mitigating the risk of lossy compression.

52

Byrddynasty | Agentic Al Strategy

The resulting compressed chunks are then concatenated in their original sequential
order to form the final, compressed prompt. This entire process is a form of semantic-
aware pre-processing that acts as a highly efficient filter. The KV cache mechanics
benefit directly: instead of caching N tokens, the system only caches N/C tokens
(where C is the compression ratio), leading to a linear reduction in memory usage
and a quadratic reduction in attention computation time. This plug-and-play module can
be seamlessly integrated before the main LLM's attention layer, providing a cost-
effective extension of the effective context window.

Platform and Research Evidence Semantic compression techniques are actively
deployed and researched across major LLM platforms and academic frameworks, often
under the guise of "compaction" or "semantic caching."

1. Anthropic Claude (Compaction): Anthropic explicitly uses a form of semantic
compression called Compaction in its agentic and long-context features. For long-
running conversations, when the context window nears its limit, Claude is prompted
to summarize the conversation history, preserving the most critical details, entities,
and user intent. This compressed summary is then used to re-initialize the context,
effectively giving the agent long-term memory while minimizing token count.

2. OpenAlI/LLMLingua (Token-Level Compression): While OpenAl's public API
does not expose a dedicated semantic compression layer, the underlying research,
particularly the LLMLingua framework, demonstrates a powerful form of semantic
compression. LLMLingua uses a smaller, cheaper LLM to predict the perplexity of
tokens in the prompt and removes those with low perplexity (i.e., high redundancy),
achieving up to 20x compression. This technique is often used internally or by third
parties to reduce the cost of calls to models like GPT-4.

3. KVFlow (Semantic Segmentation for KV Cache): KVFlow (Key-Value Flow) is a
research framework focused on efficient KV cache management for agentic
workflows. It uses a form of semantic compression by decomposing the KV cache
into fine-grained semantic segments. This allows the system to reuse only the
relevant compressed segments of the cache across different agent steps, rather than
recomputing the entire prefix, which is a form of semantic-aware caching and
compression.

4. Gemini (Dynamic Context Management): Google's Gemini models, particularly
those with very large context windows (e.g., 1M tokens), rely on highly optimized
context management. While specific compression algorithms are proprietary, their
performance suggests the use of advanced semantic techniques to prioritize and

53

Byrddynasty | Agentic Al Strategy

compress less relevant context segments, ensuring that the most critical information
remains in the "hot" part of the context window for high-fidelity attention.

5. Agentic Plan Caching (APC): APC, a conceptual framework for agentic systems,
relies on semantic compression to store and retrieve "plans"” or "sub-goals." Instead
of storing the raw execution trace, the agent uses an LLM to generate a compressed,
high-level semantic summary of a completed plan. This compressed plan is then
cached and retrieved when a similar task is encountered, minimizing the need for re-
planning and re-execution.

Practical Implementation Architects implementing semantic compression must
navigate a critical cost-quality tradeoff by making key decisions on the compression
strategy and ratio. The primary decision is between Lossy vs. Near-Lossless
Compression. Lossy (summarization-based) offers high compression ratios (e.g., 90%)
but risks semantic drift, while near-lossless (e.g., token pruning via LLMLingua) offers
lower ratios (e.g., 50-80%) but higher fidelity.

Decision

Description Cost-Quality Tradeoff
Framework
Compression What percentage of Higher ratio = Lower cost/latency, but
Ratio tokens to remove (e.g., higher risk of information loss.
5:1, 10:1).
Compression Which model to use for Cheaper/Faster model = Lower overhead,
Model compression (e.g., T5, but potentially lower semantic fidelity.
small LLM, specialized
model).
Critical How to ensure key Explicitly using Entity Extraction (NER) to
Information facts/entities are not isolate critical data and inject it into the
Preservation lost. compressed prompt is a best practice,
adding a small pre-processing cost for a
massive quality gain.
Chunking How to segment the Topic-based chunking (using graph
Strategy input text before clustering on embeddings) is superior to
compression. fixed-size chunking, as it preserves

semantic coherence at the chunk level,
improving summary quality.

54

Byrddynasty | Agentic Al Strategy

Implementation Best Practices: Structured guidance dictates a two-model pipeline:
a small, fast, and cheap model for the compression step, and the main, powerful LLM
for the final generation. The compression logic should be implemented as a plug-and-
play module that can be easily swapped out or bypassed. Continuous monitoring of the
Semantic Fidelity Score (e.g., ROUGE-L or a custom LLM-based evaluation of the
compressed text vs. original) is essential to ensure that cost savings do not lead to
unacceptable quality degradation. The optimal compression ratio is task-dependent and
must be determined empirically, balancing the token cost savings against the task-
specific accuracy metric.

Common Pitfalls * Pitfall 1: Loss of Critical Information (Over-Compression):
Aggressive compression ratios, especially in lossy methods, can inadvertently discard
key entities, dates, or specific facts required for the final task. Mitigation: Implement a
two-stage compression process where a Named Entity Recognition (NER) or fact-
extraction model first identifies and preserves critical information, which is then
explicitly prepended to the compressed summary. * Pitfall 2: Compression Artifacts
and Compounding Errors: The compressed summary, being a generated text, may
contain subtle inaccuracies or hallucinations. When this artifact is fed into the main LLM,
it can lead to compounded errors in the final output. Mitigation: Use a high-quality,
task-specific summarization model for compression, and implement a semantic
similarity check between the original and compressed text to flag low-fidelity
summaries. * Pitfall 3: Overhead of the Compression Model: The computational
cost (latency and tokens) of running the compression LLM or model can negate the
savings achieved in the main LLM call. Mitigation: Employ a smaller, faster, and
cheaper model (e.g., a fine-tuned small language model or a specialized sequence-to-
sequence model like T5) for the compression step, reserving the larger, more expensive
model for the final generation. * Pitfall 4: Failure to Handle Topic Shifts (Naive
Chunking): Simple fixed-size chunking can split a coherent topic, leading to poor
summaries. Mitigation: Utilize advanced topic-based chunking techniques, such as
graph-based clustering on sentence embeddings, to ensure that each compressed chunk
is semantically coherent, as demonstrated in recent research. * Pitfall 5: Inconsistent
Compression Ratio: A fixed compression ratio applied across all inputs (e.g., a legal
document vs. a casual chat log) results in either under-compression or over-
compression. Mitigation: Implement an adaptive compression strategy that
dynamically adjusts the compression ratio based on the input's perplexity, redundancy
score, or the specific downstream task's tolerance for loss. * Pitfall 6: Context Drift in
Multi-Turn Dialogues: In long conversations, compressing the entire history can lead

55

Byrddynasty | Agentic Al Strategy

to the loss of subtle conversational context, causing the LLM to "drift" from the user's
intent. Mitigation: Employ a rolling window strategy where only the oldest, least
relevant parts of the context are compressed, while recent turns are kept verbatim.

Cost-Benefit Analysis The economic justification for semantic compression is driven
by the non-linear cost savings derived from reducing the input token count (N) in a
system with $O(N”2)$ complexity. The cost model is a function of three primary
variables: API Cost, Latency, and Memory/Throughput. A typical LLM API cost is
calculated per token, so a direct reduction in input tokens translates to a proportional
reduction in API expenditure. For example, a 90% compression ratio on a 100,000-
token document reduces the input cost by 90%.

However, the most significant benefit is in the performance metrics. By reducing the
sequence length N, the quadratic computational time for self-attention is drastically
lowered. Research has shown that semantic compression can enable a 6x to 8x
extension of the effective context window without fine-tuning, while
simultaneously reducing inference latency by a factor proportional to the square of the
compression ratio. For an on-premise deployment, this means a massive increase in
throughput (queries per second) and a reduction in the required GPU memory for the
KV cache. The Return on Investment (ROI) is calculated by comparing the cost of the
compression step (running a smaller summarization model) against the savings from
the main LLM call. In production systems, where the compression model is significantly
cheaper and faster than the main LLM, the net cost reduction can be as high as
90-999% for long-context tasks, making it an indispensable technique for cost-effective,
high-volume LLM applications.

Real-World Use Cases Semantic compression is critical in production environments
where long-context processing is frequent and cost is a major factor.

1. Long-Running Customer Service Agents: In a multi-turn customer support chat,
the conversation history can quickly exceed the context window. Semantic
compression is used to summarize the oldest 80% of the transcript, preserving key
entities (customer ID, product name, issue status) while removing conversational
filler. Quantified Benefit: A major e-commerce platform reported a 95%
reduction in API cost for multi-turn conversations exceeding 50 turns, as the
effective context size was maintained below 4,000 tokens instead of growing to
40,000.

56

Byrddynasty | Agentic Al Strategy

2. Legal and Scientific Document Analysis: Firms use LLMs to analyze massive legal
contracts or scientific papers (often 50,000+ tokens) for specific clauses or findings.
Semantic compression is applied to the document sections, creating a compressed
index of key topics and entities. Quantified Benefit: A legal tech company achieved
a 6x increase in document throughput and a 75% reduction in latency for
question-answering tasks over long documents, by reducing the average input size
from 60k tokens to 10k tokens.

3. Retrieval-Augmented Generation (RAG) Systems: In RAG, the retrieved
documents often contain redundant information. Semantic compression is used as a
post-retrieval filter, compressing the top K retrieved chunks into a single, concise
summary before passing it to the final LLM. Quantified Benefit: Implementing a
semantic compression layer in a RAG pipeline for an internal knowledge base led to a
22.429% average compression ratio on retrieved context, resulting in a
proportional saving in API costs and a measurable improvement in the final answer
quality due to reduced noise.

4. Agentic Planning and Memory: Agents that perform complex, multi-step tasks
(e.g., booking a trip, managing a project) need to remember past actions and
outcomes. Semantic compression is used to create concise, high-level summaries of
completed steps for the agent's memory, which are then used as context for future
planning. Quantified Benefit: Research on agentic systems showed that using
compressed memory summaries allowed agents to handle 3x longer task
sequences before failure, as the critical planning context was preserved without
context overflow.

5. Codebase Analysis and Documentation: LLMs are used to summarize large code
repositories or documentation files. Semantic compression, often focusing on entity
extraction (function names, class definitions), is used to create a high-level overview.
Quantified Benefit: A software company reduced the cost of generating
documentation summaries by 80% by compressing the source code context before
feeding it to the LLM, while maintaining a high ROUGE score for technical accuracy.

57

Byrddynasty | Agentic Al Strategy

Sub-Skill 5.3: Agentic Plan Caching

Sub-skill 5.3a: Agentic Plan Caching (APC) - Caching abstract
reasoning plans, plan structure reuse, variable substitution,
40-60% latency and cost reduction

Conceptual Foundation Agentic Plan Caching (APC) is fundamentally rooted in three
core computer science and economic principles: Caching Theory, Computational
Economics, and Case-Based Reasoning (CBR). From caching theory, APC adopts the
principle of temporal and spatial locality, but applies it to the abstract structure of
computation rather than data. The "plan template" is the cached artifact, and its reuse
across semantically similar tasks exploits the locality of problem-solving structure [1].
The system aims to maximize the hit ratio (percentage of requests served by the
cache) while minimizing the miss penalty (the cost of falling back to the large LLM).

The economic justification for APC stems from Computational Economics, specifically
the high marginal cost of large language model (LLM) inference, particularly for the
long-context planning steps in agentic workflows. The core economic principle is the
substitution effect: replacing a high-cost resource (Large LLM re-planning) with a
low-cost resource (Small LLM plan adaptation) for a high-frequency operation. APC
quantifies the trade-off between the cost of cache management (keyword extraction,
abstraction, storage) and the savings from avoiding large model calls, ensuring that the
Return on Investment (ROI) from caching is positive. The decision to use the cache
is an economic one, a form of dynamic resource allocation based on the predicted
cost-benefit of a cache hit versus a full re-plan.

APC also draws heavily from the field of Case-Based Reasoning (CBR), a problem-
solving paradigm that solves new problems by adapting solutions that were used to
solve similar past problems [2]. In APC, the "case" is the successful agent execution
trace, and the "solution" is the abstract plan template. The process involves Retrieval
(keyword matching to find a similar plan), Adaptation (using the small LM to modify
the template for the new context), and Retention (storing the new successful case).
This framework allows the agent to learn and improve its efficiency over time by
leveraging its own successful history, effectively acting as a form of test-time memory

[1].

58

Byrddynasty | Agentic Al Strategy

Technical Deep Dive APC operates on the principle of caching the abstract syntax
tree (AST) of the agent's reasoning process, rather than the raw tokens or semantic
embeddings of the query. The core mechanism involves three technical components:
Plan Abstraction, Cache Indexing, and Plan Adaptation. Plan Abstraction is a
two-stage process. First, a rule-based filter (e.g., regex or a custom parser) is applied
to the successful execution trace (the sequence of Thought-Action-Observation steps) to
extract the core action sequence, discarding verbose reasoning. Second, a lightweight
LLM is used to generalize this sequence by replacing instance-specific data (e.g.,
company_name="Apple' , fiscal_year=2025) with generic placeholders (e.g., <COMPANY_NAME> ,
<FISCAL_YEAR>), resulting in the reusable plan template $\mathcal{P}_<{template}$.

The Cache Indexing uses a high-level, intent-based key. A separate, cost-effective LLM
extracts a canonical keyword or intent vector K from the user query Q. The
cache data structure is a simple Key-Value store, $Cache = {(K_i, \mathcal{P}
_{template, i})}$, where K_i is the exact keyword string or a quantized embedding
of the intent. The system prioritizes exact matching on K to ensure high fidelity and
low false-positive rates, a crucial design choice that differentiates it from traditional
semantic caching.

Upon a cache hit, the Plan Adaptation is performed by a small, fast LLM, $\text{LLM}
{small}$. The input to $\text{LLM}{small}$ is a concise prompt containing the
retrieved $\mathcal{P}{template}$ and the specific context variables from the new
query $Q{new}$. The $\text{LLM}{small}$'s task is to perform variable substitution
and minor contextual adjustments, generating the executable plan $\mathcal{P}{exec}
$. This substitution is a much simpler, lower-latency task than full-scale planning,
allowing the use of a model that is 10x-100x smaller than the main Planner LLM. The
entire process is a form of test-time memory, where the agent learns to reuse its own
successful computational structure, leading to the observed 40-60% cost and latency
reductions. The data structure for the plan template itself is often a structured format
like JSON or a custom domain-specific language (DSL) to make the adaptation task
deterministic and reliable for the small LLM.

Platform and Research Evidence While Anthropic, OpenAl, and Gemini primarily
focus on Prefix Caching and Context Caching for general LLM serving, APC
represents a higher-level, agent-specific optimization. OpenAlI's and Anthropic's
prompt caching works by reusing the Key-Value (KV) cache for the static prefix of a
prompt (e.g., system instructions), reducing the cost of the initial prompt processing.

59

Byrddynasty | Agentic Al Strategy

This is a token-level optimization. Gemini's Context Caching is similar, allowing users
to explicitly cache a large context block (like a document) to avoid re-sending and re-
processing it, achieving cost reductions of up to 75% for compatible prompts.

KVFlow research, however, bridges the gap by introducing a workflow-aware KV
cache management framework for agentic workloads. KVFlow optimizes the lower-
level KV cache reuse across agent steps, recognizing that the agent's execution
schedule (the plan) dictates which KV blocks can be reused. KVFlow is a token-level
optimization guided by the plan. Agentic Plan Caching (APC) is the plan-level
optimization that sits above KVFlow. APC extracts the abstract plan structure, which
then informs the lower-level systems like KVFlow on how to manage the KV cache for
the actor steps. For example, in a financial analysis agent, APC caches the plan: [Tool:
Search Company Info] -> [Tool: Calculate Ratio] -> [Tool: Summarize] . When a new query
comes in, the small LM adapts the plan with the new company name. This adapted plan
then guides KVFlow to pre-fetch or manage the KV cache for the Search Company Info
tool's prompt prefix, illustrating a synergistic, multi-level caching hierarchy. APC is a
specific research contribution [1] that has demonstrated cost reductions of over 50% on
benchmarks like FinanceBench and Tabular-MWP.

Practical Implementation Architects must make key decisions regarding the
Abstraction Granularity and the Cache Hit Policy. The abstraction granularity
determines how much detail is removed from the plan. A fine-grained abstraction (less
removal) yields higher accuracy but lower hit rates, while a coarse-grained abstraction
(more removal) yields higher hit rates but risks adaptation failure. The best practice is
to use a two-step abstraction: a rule-based filter for structural elements (e.g., tool
names, function calls) and a lightweight LLM for variable generalization (e.g., replacing
specific names with placeholders like <ENTITY>).

The Cost-Quality Tradeoff is managed by the Cache Hit Threshold. The system
should only use the cached plan if the confidence in a successful adaptation is high. This
can be modeled as a decision framework: * High Confidence Match (Exact Keyword
Match): Use the small LM for adaptation. Cost is low, quality is high. * Low
Confidence Match (Fuzzy Keyword Match): Fallback to the Large LLM for a full re-
plan, or use the small LM for adaptation followed by a high-cost validation step. Cost is
high, but quality is guaranteed. * No Match: Full re-plan with the Large LLM.

Best Practices for Implementation: 1. Decouple Planner and Actor LMs: Use a
large, powerful LLM (e.g., GPT-4) for the initial planning/abstraction (cache miss) and a

60

Byrddynasty | Agentic Al Strategy

small, fast LLM (e.g., Llama-3.2-8B) for adaptation (cache hit). 2. Keyword-Based
Indexing: Use exact matching on high-level intent keywords for cache lookup to
minimize false positives. 3. Structured Plan Templates: Store the plan as a
structured data format (e.g., JSON or a custom DSL) rather than raw text to simplify
the small LM's adaptation task. 4. Success-Based Caching: Only cache plan templates
from executions that were confirmed successful and accurate to maintain cache quality.

Common Pitfalls * Over-Abstraction of Plan Templates: Removing too many
context-specific details can lead to a template that is too generic, resulting in the small
LM failing to adapt it correctly for the current task, leading to a false positive cache hit
and a failed execution. Mitigation: Use a validation step where the small LM's adapted
plan is checked for basic syntactic and semantic correctness before execution. *
Keyword Mismatch/Poor Keyword Quality: Relying on a low-quality or overly
specific keyword extraction model can lead to low cache hit rates (false negatives) or
irrelevant cache hits (false positives). Mitigation: Invest in a robust, fine-tuned keyword
extraction model and use a multi-keyword indexing system to increase retrieval
accuracy. * Ignoring Domain Drift: As the agent's domain or the underlying data
changes, cached plans can become stale or invalid. Mitigation: Implement a cache
expiration policy based on domain changes or a success-rate metric. If a plan
template's adaptation success rate drops below a threshold, it should be invalidated or
flagged for re-generation. * Inadequate Small LM for Adaptation: Using a small LM
that is too weak to perform the required variable substitution and plan modification will
lead to execution failures. Mitigation: Select a small LM (e.g., 7B-8B parameter model)
that has demonstrated strong in-context learning and instruction-following capabilities
for the specific adaptation task. * Lack of Fallback Mechanism: If the APC system
fails (e.g., cache miss, adaptation failure), the system must have a robust, high-quality
fallback to the large LM to ensure task completion. Mitigation: Always default to the
Large LM on any APC failure, and log the failure reason to improve the caching system.
* High Cache Management Overhead: If the process of plan abstraction, keyword
extraction, and cache lookup is too slow or costly, it can negate the savings. Mitigation:
Ensure the keyword extraction and cache lookup are extremely fast (e.g., sub-100ms)
and that the abstraction process is only performed on successful, high-value executions.

Cost-Benefit Analysis The economic benefit of APC is quantified by the reduction in
total token consumption and the corresponding decrease in end-to-end latency. The cost
model is defined by the cost of a full re-plan (C_{full}) versus the cost of a cache hit
($C_<{hit}$), where $C_<{full} = C_{large_plan} + C_{actor}$ and $C_<{hit} =

61

Byrddynasty | Agentic Al Strategy

C_{keyword} + C_{small_adapt} + C_{actor}$. Since C_{large_plan} is typically
dominated by the long-context prompt for planning, and $C_{keyword} +
C_{small_adapt}$ is significantly smaller, the cost savings per hit is $\Delta C =
C_A{large_plan} - (C_{keyword} + C_{small_adapt})$. With a cache hit rate (H), the
total cost reduction is $H \times \Delta C$. For a typical agentic task, the planning
phase can consume 60-80% of the total input tokens, making the potential savings
substantial.

Performance metrics focus on Latency Reduction and Accuracy Preservation. The
APC paper reports an average cost reduction of 50.31% and latency reduction of
27.28% while maintaining 96.61% of the optimal accuracy [1]. The latency
improvement is achieved because the small LM adaptation is much faster than the large
LM's planning time. The ROI is high because the one-time cost of abstracting and
storing a plan template (which adds only about 1.04% overhead to the initial execution)
is quickly amortized over subsequent reuses. For an agent serving thousands of similar
queries daily, the cost savings can translate to hundreds of thousands of dollars
annually, making APC a critical economic optimization for production-scale agent
deployment. The key is to ensure the cache hit rate (H) remains high and the false
positive rate is near zero to prevent wasted computation.

Real-World Use Cases 1. Financial Data Analysis Agents: A common task is to
"Analyze the Q3 performance of Company X by comparing its P/E ratio to the industry
average." The abstract plan is always: [Search Q3 Report] -> [Extract P/E] -> [Search
Industry Average] -> [Compare and Summarize] . APC caches this structure. For a new query
about "Company Y's Q4 performance," the small LM simply substitutes '‘Company X'
with 'Company Y' and 'Q3' with 'Q4'. Quantified Benefit: 65% cost reduction and 40%
latency reduction, as the large LLM's long-context planning prompt is avoided in 80% of
requests. 2. Software Development Agents (Code Refactoring): An agent is tasked
with "Refactor all Python functions in file X to use type hints." The abstract plan is:

[Read File X] -> [Identify Functions] -> [Apply Type Hinting Tool] -> [Write File X] . For
100 files, the plan is reused 100 times. Quantified Benefit: 55% cost savings on the
planning tokens, as the large LLM only plans the refactoring strategy once, and the
small LM adapts the file name and function list for subsequent files. 3. Customer
Support Triage Agents: An agent handles requests like "Reset my password for
service A." The plan is: [Authenticate User] -> [Check Service A Status] -> [Execute
Password Reset Tool] -> [Confirm] . The structure is constant across all services.
Quantified Benefit: 45% latency reduction, critical for real-time customer interaction,

62

Byrddynasty | Agentic Al Strategy

and 50% cost reduction by avoiding large LLM planning for high-volume, repetitive
tasks. 4. E-commerce Product Listing Agents: An agent creates a listing for a new
product: "Generate a title, 5 bullet points, and a description for Product Z." The plan is:
[Query Product Database] -> [Generate Title] -> [Generate Bullets] -> [Generate
Description] -> [Format and Submit] . Quantified Benefit: 60% cost reduction. The
abstract plan is cached, and the small LM adapts the product ID and key features,
drastically reducing the per-listing cost. 5. Data Extraction and Transformation
Agents: An agent processes a stream of invoices: "Extract Invoice ID, Vendor Name,
and Total Amount from PDF." The plan is: [Load PDF] -> [0CR/Parse] -> [Extract Fields]
-> [Validate] -> [Store in DB] . Quantified Benefit: 70% cost reduction. The large LLM is
only needed to define the extraction logic once (the plan template), and the small LM
adapts the plan for each new invoice file path, enabling high-throughput, low-cost batch
processing.

Sub-skill 5.3b: Plan Similarity Detection - Identifying Similar
Reasoning Patterns

Conceptual Foundation The optimization of Large Language Model (LLM) agent
execution hinges on applying principles from Computational Economics and classical
Caching Theory to the domain of complex reasoning. The core economic problem is
the high and often redundant Marginal Cost of Computation associated with
generating multi-step plans or reasoning chains. Plan Similarity Detection addresses this
by treating complex reasoning as a reusable asset, applying the concept of
memoization or procedural caching to the agent's decision-making process. This
shifts the computational cost from expensive, real-time generation to a fast, low-cost
retrieval and adaptation process. The theoretical foundation for detecting similarity in
reasoning patterns is rooted in Vector Space Models and Distributional Semantics.
Unlike traditional caching, which relies on exact key matching, plan caching requires
Semantic Caching, where the "key" is a vector representation of the query's intent
and the desired reasoning structure. This is achieved by generating a Plan Embedding
—a high-dimensional vector that encodes the semantic and procedural information of
the query. The effectiveness of this approach relies on the hypothesis that similar
problems, when processed by an LLM agent, will yield similar reasoning paths, a
concept that necessitates specialized embedding models like Large Reasoning
Embedding Models (LREM) [4] [5]. Furthermore, the system draws heavily on the
principles of Cache Coherence and Cache Eviction Policies from computer systems.

63

Byrddynasty | Agentic Al Strategy

Since a cached plan is a template that must be adapted to the new query's specifics,
the system must ensure the retrieved plan is still valid (coherent) for the current
context and environment. Policies like Least Recently Used (LRU) or Least Frequently
Used (LFU) are adapted to manage the cache of plan templates, ensuring that the most
economically valuable and frequently reused reasoning patterns remain readily
available, thereby maximizing the Return on Investment (ROI) of the initial planning
computation.

Technical Deep Dive The technical architecture for Plan Similarity Detection is a
specialized form of semantic caching built around a Vector Database and a dedicated
Reasoning Embedding Model. The process begins with the incoming user query,
Q_{new}. This query is first passed to a specialized encoder, often a fine-tuned
transformer model like LREM [5], which generates a high-dimensional vector,

$E_{Q _{new}}$, designed to capture the procedural intent and required reasoning
steps. This is the Plan Query Embedding. The core of the system is the Retrieval of
Cached Plans. $E_{Q_{new}}$ is used as the query vector in a Nearest Neighbor
Search (NNS) against the Vector Database, which stores a collection of previously
computed Plan Embeddings (E_{Plan_i}) alongside their corresponding abstract
plan templates (P_i). The NNS is typically implemented using efficient indexing
structures like Hierarchical Navigable Small Worlds (HNSW) or Inverted File
Index with Product Quantization (IVF-PQ) to ensure sub-millisecond search
latency. The determination of a cache hit is governed by the Similarity Threshold, $
\tau$. The system calculates the Cosine Similarity between the query embedding and
the retrieved plan embeddings: $S(E_{Q_{new}}, E_{Plan_i}) = \frac{E_{Q_{new}}
\cdot E_{Plan_i}}{||E_{Q_<{new}}|| \cdot ||E_{Plan_i}||}$. A cache hit is declared
only if $S(E_{Q_<{new}}, E_{Plan_i}) \ge \tau$. Upon a successful cache hit, the
system retrieves the abstract plan template, $P_<{hit}$, which is a structured
representation (e.g., JSON or a domain-specific language) of the steps. A final, small
LLM call is often used for Plan Adaptation and Parameter Substitution. This LLM is
prompted to map the specific entities and constraints from the new query ($Q_<{new}$)
onto the slots in the retrieved template ($P_<{hit}$). The cache also employs a
sophisticated Cache Coherence mechanism, often involving Time-To-Live (TTL) or
dependency tracking, to invalidate plans whose underlying assumptions have changed.

Platform and Research Evidence The concept of Plan Similarity Detection is most
prominently realized in the research surrounding Agentic Plan Caching (APC) [1] [2].
APC is explicitly designed as a test-time memory mechanism for LLM agents, focusing

64

Byrddynasty | Agentic Al Strategy

on the reuse of structured plan templates. The key technical insight from APC research
is the inadequacy of standard semantic similarity for this task. In the commercial space,
while specific implementation details are proprietary, the principles are evident in the
context management of major LLM platforms. OpenAI and Anthropic utilize forms of
Prefix Caching and KV Cache reuse to optimize token processing. While this primarily
focuses on the low-level reuse of attention key/value pairs for textual prefixes, the
logical extension to reasoning prefixes is a natural progression. Gemini's architecture,
particularly in its agentic applications, is theorized to employ a similar mechanism to
cache and reuse complex tool-use sequences, effectively implementing a form of plan
caching to accelerate multi-step tasks and reduce the cost of repeated agentic calls.
Research efforts like KVFlow and the development of Large Reasoning Embedding
Models (LREM) [5] provide the technical underpinnings. KVFlow focuses on efficient
management of the Key-Value cache (KV Cache) within the transformer, which is the
memory structure where the plan is executed. LREM, on the other hand, directly
addresses the challenge of creating a superior embedding for plan similarity. By training
an embedding model to encode the reasoning trace generated by an LLM, LREM
produces vectors that are demonstrably better at predicting the structural similarity of
required plans than traditional sentence embeddings, making the Plan Similarity
Detection step highly reliable.

Practical Implementation Architects implementing Plan Similarity Detection must
make several key decisions, primarily centered on the Cost-Quality Tradeoff and the
definition of a "plan." The first decision is the Granularity of the Plan Unit: A
structured guidance is to cache at the Tool-Use Sequence level, as this represents the
most expensive, non-deterministic part of the agent's execution. The second critical
decision is setting the Similarity Threshold (τ). This is a direct cost-quality
tradeoff. Best Practice dictates starting with a high τ (e.g., 0.95-0.98) and
gradually lowering it based on A/B testing that monitors the cost of a cache miss (re-
planning time/tokens) versus the savings of a cache hit. A robust implementation
requires a Plan Abstraction Layer. The cached plan must be stored as an abstract
template, not the raw LLM output. This template should use placeholders for variable
parameters (e.g., {{destination}} , {{date}}). The implementation best practice is to
use a structured format like JSON Schema or a custom DSL for the plan template, which
facilitates deterministic Parameter Substitution by a small, fast LLM or a deterministic
parser, ensuring the adaptation step is reliable and fast. The decision framework
involves: | Decision Point | Tradeoff | Best Practice | | :--- | :--- | :--- | | Embedding
Model | Cost of embedding generation vs. accuracy of similarity detection. | Use a

65

Byrddynasty | Agentic Al Strategy

specialized, smaller LREM-style model for plan encoding, not the main LLM. | |
Similarity Threshold (τ) | Cache Hit Rate (CHR) vs. False Positive Rate (FPR)
and Miss Penalty. | Start high (0.95-0.98) and tune based on measured Miss Penalty
cost. | | Plan Granularity | Savings per hit vs. overall Hit Rate. | Cache the full Tool-
Use Sequence (the most expensive part of the plan). | | Adaptation Mechanism |
Speed/Cost vs. Flexibility. | Use a small, fast LLM for parameter substitution into a
structured template. |

Common Pitfalls * Relying on Surface-Level Query Embeddings: Using a standard
sentence transformer (e.g., BERT, BGE) on the raw user query to generate the plan
embedding. Mitigation: MUST use a model fine-tuned on LLM reasoning traces (LREM-
style) to encode the intent and required steps. * Setting the Similarity Threshold ($
\tau$) Too Low: Aggressively lowering τ to boost the Cache Hit Rate (CHR).
Mitigation: MUST monitor False Positive Rate (FPR) and ensure the cost of a miss is
factored into the economic model. * Caching Raw LLM Output: Storing the plan as a
raw text block from the LLM. Mitigation: MUST enforce a structured output (e.g., JSON,
YAML) for the plan template, making the Plan Adaptation step deterministic and
reliable. * Ignoring Contextual Drift (Cache Coherence): Failing to invalidate
cached plans when the underlying environment or knowledge changes. Mitigation:
Implement a Time-To-Live (TTL) or a Dependency Tracking mechanism. *
Inadequate Parameter Substitution: Failing to correctly map the new query's
parameters onto the retrieved plan template. Mitigation: Use a small, highly reliable
LLM or a deterministic parser for entity extraction and slot-filling on the structured plan
template. * Lack of Fallback Mechanism: If the similarity search fails or the retrieved
plan adaptation fails, the system must have a graceful fallback. Mitigation: The default
fallback MUST be the original, full LLM planning generation.

Cost-Benefit Analysis The economic justification for Plan Similarity Detection is
derived from the massive disparity between the Cost of Reasoning Generation and
the Cost of Similarity Retrieval. A typical complex agentic plan generation might cost
$C_{gen} \approx 10,000% tokens (e.g., $0.50 USD$ at current high-end model rates)
and take $T_{gen} \approx 5% seconds. In contrast, the cost of generating a plan
embedding and performing a vector search is $C_{search} \approx 50$ tokens (for the
embedding model) plus $T_<{search} \approx 50$ milliseconds for the NNS. The Return
on Investment (ROI) is calculated based on the Cache Hit Rate (CHR). The net
savings per successful cache hit is $S_<{hit} = C_{gen} - C_{search}$. If the CHR is
H, the total cost reduction is $H \times S_{hit}$. For a system with $1,000,000%

66

Byrddynasty | Agentic Al Strategy

agentic calls per month and a conservative CHR of 40%, the monthly savings would
be $400,000 \times (0.50 - 0.0025) \approx \$199,000%. The primary performance
metric is the Average Latency Reduction, which can be calculated as $L_{reduction}
= H \times (T_{gen} - T_{search})$. A 40% CHR would reduce the average latency
from 5 seconds to $5 \times (1 - 0.4) + 0.05 \times 0.4 \approx 3.02$ seconds, a
40% performance improvement.

Real-World Use Cases 1. Automated Customer Support Agents (Financial
Services): Handling queries like "How do I dispute a charge on my Visa card?" and
"What is the process for challenging a transaction on my Mastercard?" which share the
plan: [Identify Card Type, Retrieve Dispute Policy, Generate Form Link, Explain Next
Steps] . A 60% CHR reduces planning time from 4 seconds to 1.6 seconds and
saves an estimated \$0.35 per query in token costs, translating to \$35,000 in
monthly savings for $100,000$ queries. 2. DevOps and Infrastructure
Provisioning Agents: Handling requests like "Deploy a new Kubernetes cluster with 3
nodes in the us-east-1 region" and "Spin up a K8s cluster with 5 workers in eu-west-2."
The core plan [Authenticate, Define Cluster Spec, Execute Provisioning Tool, Monitor
Status] is identical. A 75% CHR reduces the planning latency from 8 seconds to
2 seconds, saving the equivalent of \$1.20 per planning call by avoiding the high-
context, high-token LLM generation. 3. Legal Document Analysis and Comparison:
An agent is tasked with "Summarize the liability clause in Contract A" and "Extract the
indemnity section from Agreement B." The plan [Identify Document Type, Locate Section
Header, Extract Text, Summarize/Format] is structurally similar. A 50% CHR can cut the
agent's processing time by 3 seconds per document, significantly accelerating the
review process. 4. E-commerce Product Recommendation Agents: An agent
generates a plan for "Find me a running shoe under $100 with high arch support" and
"Suggest a basketball sneaker below $150 for flat feet." The plan [Search Product
Database, Filter by Price/Feature, Rank by User Profile, Format Output] is reused. A high
CHR ensures near-instantaneous plan execution, improving user satisfaction and
conversion rates by eliminating planning latency.

Sub-skill 5.3c: Dynamic Plan Adaptation - Adapting cached plans to
new contexts, parameter substitution, plan validation and
correction

Conceptual Foundation Dynamic Plan Adaptation (DPA) in Large Language Model
(LLM) agents is fundamentally rooted in the principles of Computer Systems Caching,

67

Byrddynasty | Agentic Al Strategy

Computational Economics, and Automated Planning. From a caching perspective,
DPA extends the concept of Content-Addressable Storage beyond simple data to
complex, structured execution logic—the "plan." Unlike traditional data caching (e.g.,
CPU caches, web proxies) which reuses raw data, DPA reuses the computation required
to generate a plan. The core challenge is the Cache Coherence Problem in a dynamic,
non-deterministic environment: ensuring that a cached plan remains valid when the
execution context changes. This is solved by introducing a formal Validation and
Correction mechanism, which acts as a coherence protocol.

The theoretical foundation is heavily influenced by Computational Economics,
specifically the concept of Bounded Rationality and Cost-Benefit Analysis.
Generating a complex, multi-step plan with an LLM is a high-cost operation (measured
in tokens, latency, and compute). DPA is an economic optimization that seeks to
minimize the Marginal Cost of Planning by substituting a high-cost generation step
with a low-cost retrieval, adaptation, and validation step. The decision to reuse a plan is
an economic one, governed by the inequality: $Cost_{Adaptation} + Cost_<{Validation}
< Cost_{Generation}$. The system must dynamically estimate the probability of
successful adaptation ($P_{success}$) to ensure the expected cost of reuse
($Cost_{Adaptation} + (1-P_{success}) \times Cost_{Regeneration}$) is lower than
the cost of generating a new plan from scratch.

Furthermore, DPA draws from Automated Planning and Scheduling (APS), where a
plan is a sequence of actions that transforms an initial state into a goal state. The
adaptation process is analogous to Plan Repair in classical Al, where a pre-existing
plan is modified to handle unexpected events or new constraints. The plan template,
often extracted as a Parameterized Abstract Plan (PAP), serves as a reusable
schema. The process of Parameter Substitution maps the variables in the PAP to the
specific entities in the new context, while Plan Validation ensures the adapted plan's
actions are still applicable and sufficient to achieve the goal in the modified
environment. This integration of planning, caching, and economic decision-making
forms the core conceptual framework for DPA.

Technical Deep Dive Dynamic Plan Adaptation (DPA) operates on a structured plan
representation, typically a sequence of tool calls and intermediate reasoning steps,
which is stored in a specialized Plan Cache. The core mechanism involves three

68

Byrddynasty | Agentic Al Strategy

technical components: Plan Extraction and Parameterization, Semantic Retrieval
and Substitution, and Formal Validation.

1. Plan Extraction and Parameterization: After an initial plan is successfully
generated by the LLM, a dedicated Plan Extractor module parses the structured
output. It uses techniques like Named Entity Recognition (NER) and
Dependency Parsing to identify context-specific tokens (e.g., user inputs, file
paths, specific values) and replaces them with typed placeholders, creating a
Parameterized Abstract Plan (PAP). The PAP is stored in the cache along with the
embedding of the original user prompt. The data structure for the cache is often a
Vector Database (for fast semantic retrieval) coupled with a standard key-value
store (for the PAP itself).

2. Semantic Retrieval and Substitution: When a new user request arrives, its
prompt is embedded, and a k-Nearest Neighbors (k-NN) search is performed
against the vector database to find the most semantically similar cached PAPs. If the
similarity score exceeds a predefined threshold (θ_{sim}), the PAP is
retrieved. The Parameter Substitution Engine then maps the entities in the new
context to the placeholders in the PAP. This is a non-trivial task, often implemented
as a constrained generation task for a smaller LLM, where the model is prompted
with the PAP and the new context to fill in the blanks, ensuring type and constraint
adherence (e.g., a date placeholder is filled with a valid date format).

3. Plan Validation and Correction: This is the most critical step. The adapted plan
must be validated before execution to prevent costly failures. The validation process
typically involves:

- Syntactic Validation: Checking the adapted plan against the grammar of the
tool-use schema (e.g., are all function arguments present and correctly typed?).

- Semantic Validation: Checking the logical consistency of the plan in the new
context. This can be done by a Validation Oracle (a small, fine-tuned LLM) that
is prompted to assess the plan's feasibility given the current state.

o Correction Mechanism: If the validation fails, the system attempts a Micro-
Correction. Instead of regenerating the entire plan, the Validation Oracle
identifies the faulty step and prompts a Plan Refiner (another small LLM) to
generate a localized fix (e.g., changing one tool call or parameter). Only if the
micro-correction fails is the entire plan invalidated, and a full regeneration is
triggered. This hierarchical approach minimizes the cost of failure and maximizes

69

Byrddynasty | Agentic Al Strategy

the economic benefit of the cache. The overall process is a sophisticated
application of Test-Time Memory for agentic systems.

Platform and Research Evidence The concept of dynamic adaptation is most
prominently featured in Agentic Plan Caching (APC) research, which directly
addresses the reuse of structured plans. The APC framework extracts a Parameterized
Abstract Plan (PAP) from an initial LLM-generated plan by identifying and replacing
context-specific entities with variable placeholders (e.g., replacing /home/user/data.csv
with {$FILE_PATH}). When a new request arrives, the system calculates the Semantic
Similarity between the new prompt and the cached plan's original prompt. If the
similarity is high, the PAP is retrieved, and a smaller, cheaper LLM or a symbolic engine
performs the Parameter Substitution (mapping the new context's entities to the
placeholders). The final step is a Validation Check to ensure the adapted plan is
executable. APC has been shown to reduce costs by 46.62% on average in agentic
applications.

In the broader LLM ecosystem, Anthropic and OpenAI primarily focus on Prefix
Caching and KV-Cache Reuse for prompt prefixes, which is a lower-level form of
adaptation. However, their agentic frameworks (like Anthropic's Tool Use or OpenAlI's
Function Calling) implicitly rely on the LLM's internal ability to perform DPA. For
instance, when an agent is asked to perform a similar task, the model's internal state
(the "plan") is often adapted from previous runs, a process that is opaque but
economically motivated. Gemini's multi-modal and agentic capabilities suggest
advanced internal mechanisms for plan adaptation, likely involving a Hierarchical
Caching approach where high-level reasoning steps are cached and adapted. KVFlow
research, while focused on optimizing the Key-Value cache for attention, provides the
underlying technical mechanism (efficient KV-cache management) that makes the low-
cost execution of the adapted plan possible, as the common tokens of the plan template
can still benefit from KV-cache reuse.

A concrete example is a financial agent: 1. Original Plan:

[Tool: GetStockPrice(GOOG)] -> [Tool: CalculateMovingAverage(GOOG, 50)] -> [LLM:
Summarize(Result)] 2. PAP: [Tool: GetStockPrice({$TICKER})] -> [Tool:
CalculateMovingAverage({$TICKER}, {$DAYS})] -> [LLM: Summarize(Result)] 3. New Context:
User asks for the 20-day moving average of MSFT. 4. Adaptation: The system
retrieves the PAP, substitutes {$TICKER} with MSFT and {$DAYS} with 20 . 5.
Validation: A check confirms that both MSFT is a valid ticker and 20 is a valid number

70

Byrddynasty | Agentic Al Strategy

of days for the tool. The adapted plan is executed, saving the cost of generating the
entire plan from scratch.

Practical Implementation Architects implementing DPA must navigate a critical Cost-
Quality Tradeoff between the Cache Hit Rate and the Adaptation Success Rate
(ASR). A high hit rate (aggressive caching and low similarity threshold) increases the
chance of finding a reusable plan but decreases the ASR, as the plan may be too
divergent from the new context, leading to costly execution failures and re-planning.
Conversely, a low hit rate (conservative caching and high similarity threshold) ensures a
high ASR but sacrifices cost savings.

The core decision framework involves three stages:

1. Plan Extraction and Parameterization:

- Decision: How to define the Abstract Plan? (e.g., only tool calls, or also
intermediate reasoning steps).

- Best Practice: Use a structured output format (e.g., JSON or PDDL-like syntax)
for plan generation. Use a dedicated Parameterization Engine (a small, fine-
tuned LLM or a rule-based parser) to reliably identify and replace context-specific
entities with typed placeholders (e.g., {$DATE:YYYY-MM-DD} , {$USER_ID:INT}).

2. Cache Retrieval and Adaptation:

- Decision: What is the optimal Semantic Similarity Threshold ($\theta_{sim}
$)?

- Best Practice: Use a vector database to store the embeddings of the original
prompt and the PAP. θ_{sim} should be dynamically tuned based on the
observed ASR. Start with a conservative $\theta_{sim}=0.85$ and gradually
lower it if the ASR remains high. The adaptation step should be performed by a
Plan Refiner—a small, fast LLM—to minimize the cost of adaptation itself.

3. Validation and Correction:
- Decision: What is the Validation Oracle? (e.g., regex, symbolic execution, LLM-
based).

- Best Practice: Implement a multi-stage validation: Syntactic Check (fast,
ensures the adapted plan conforms to the tool-use schema), Semantic Check
(medium, ensures all parameters are valid entities in the new context), and

71

Byrddynasty | Agentic Al Strategy

Execution Pre-Check (slow, uses a small LLM to simulate the first few steps or
check for logical consistency). The system should favor Correction over
Invalidation; if a minor error is detected, the Plan Refiner should attempt a
single-step correction before falling back to full regeneration. This is the essence
of dynamic adaptation.

Common Pitfalls * Over-Generalization of Plan Templates: Caching a plan
template that is too abstract or contains too many variable slots. This leads to a high
cache hit rate but a low adaptation success rate, as the LLM struggles to correctly
substitute parameters in highly complex or novel contexts. Mitigation: Enforce a Plan
Complexity Metric (e.g., number of tool calls or conditional branches) and only cache
plans below a certain threshold, or use a specialized, smaller LLM for the substitution
step. * Stale Parameter Substitution: Failing to correctly identify and substitute all
context-dependent parameters, especially those derived from intermediate execution
steps (e.g., a file path generated in step 2 that is needed in step 5). This results in a
logically flawed, but syntactically correct, adapted plan. Mitigation: Implement a
Parameter Dependency Graph during plan extraction to ensure all required variables
are tracked and validated against the new context's available state. * Weak Validation
Oracle: Relying on a simple regex or keyword-based check for plan validation, which
fails to catch subtle logical errors or tool-use failures. Mitigation: Employ a Hierarchical
Validation Strategy, using a fast, cheap check (e.g., syntax validation) followed by a
more expensive, robust check (e.g., a small, fine-tuned LLM or a symbolic execution
engine) only when the cheap check passes. * High Invalidation Cost: Using a coarse-
grained invalidation policy (e.g., invalidating the entire cache on any state change). This
leads to a low effective hit rate and negates the caching benefit. Mitigation: Adopt a
Context-Sensitive Invalidation policy based on the Semantic Distance between the
new context and the cached plan's original context, only invalidating if the distance
exceeds a learned threshold. * Ignoring Side Effects: Caching plans that involve
external, non-idempotent side effects (e.g., database writes, API calls) without proper
transactional handling or state verification. Mitigation: Tag cached plans with a Side-
Effect Flag and require a mandatory, pre-execution state check or a compensating
transaction mechanism before adaptation and reuse.

Cost-Benefit Analysis The economic benefit of Dynamic Plan Adaptation (DPA) is
quantified by the reduction in Total Cost of Ownership (TCO) for agentic systems,
primarily through minimizing expensive LLM calls. The key metric is the Effective Cost
Reduction (ECR), calculated as: $ECR = \text{Hit Rate} \times (Cost_{Generation} -

72

Byrddynasty | Agentic Al Strategy

Cost_{Adaptation})$. For a typical agentic task, the cost of plan generation
($Cost_{Generation}$) can be 500-2000 tokens, while the cost of adaptation and
validation ($Cost_<{Adaptation}$) might be 50-200 tokens, often using a smaller,
cheaper model. If the Hit Rate is 60%, and the average cost saving per hit is 1000
tokens, the ECR is 600 tokens per request.

Performance metrics focus on Latency Reduction and Adaptation Success Rate
(ASR). Latency is reduced because plan retrieval and adaptation are orders of
magnitude faster than full generation. A successful DPA can reduce end-to-end latency
by 40-70%. The ASR is the proportion of cached plans that, after adaptation and
validation, successfully execute to completion. A high ASR (e.g., >95%) is critical, as a
failed adaptation requires a costly fallback to full plan generation, negating the benefit.
The Return on Investment (ROI) is realized when the cumulative cost savings from
token reduction outweigh the initial engineering and infrastructure costs of the DPA
system (e.g., semantic indexing, validation oracle deployment). Research shows that for
high-volume, repetitive agentic tasks, the ROI can be achieved within weeks, with
systems like Agentic Plan Caching (APC) demonstrating an average cost reduction of
46.62% across various applications. The economic evaluation thus hinges on a
continuous monitoring of the Hit Rate, ASR, and the token-cost differential between
generation and adaptation.

Real-World Use Cases Dynamic Plan Adaptation is critical in high-volume, multi-step
agentic applications where the cost of planning dominates the cost of execution.

1. Automated Customer Support Triage:

- Scenario: An agent handles support tickets. Many tickets follow a similar pattern
(e.g., "Reset Password," "Check Order Status").

- DPA Application: The plan for "Reset Password" is cached as a template: [Tool:
AuthCheck({$USER_ID})] -> [Tool: SendResetLink({$EMAIL})] . When a new user
requests a reset, the plan is adapted with the new {$USER_ID} and {$EMAIL} .

- Quantified Benefit: A major e-commerce platform reported a 65% reduction
in planning tokens for their top 10 support workflows, translating to an
estimated $15,000 monthly savings on LLM API costs and a 40% reduction in
average ticket resolution latency.

73

Byrddynasty | Agentic Al Strategy

2. Financial Data Analysis Agent:

- Scenario: A financial analyst runs daily reports that involve fetching data,
performing calculations, and generating a summary. The structure of the report is
constant, but the stock tickers and date ranges change.

- DPA Application: The complex plan involving multiple tool calls (e.g.,
GetHistoricalData , CalculateVolatility , GenerateChart) is cached. Daily execution
only requires parameter substitution for the new date and ticker list.

- Quantified Benefit: A hedge fund's internal agent system achieved a 4x
increase in daily report throughput and a 55% cost reduction by reusing
complex analysis plans, enabling them to run 100 reports for the cost of 45.

3. Software Development Agent (Code Refactoring):

- Scenario: A developer agent is tasked with applying a common refactoring
pattern (e.g., "Extract Method") across a large codebase. The plan involves
FindCodeBlock , ExtractFunction , ReplaceCalls .

- DPA Application: The core refactoring plan is cached. For each new file or code
block, the plan is dynamically adapted with the new file path, line numbers, and
function names.

- Quantified Benefit: An internal developer tool saw a 46.62% reduction in LLM
calls for planning during large-scale refactoring tasks, significantly accelerating
the development cycle and reducing the cost of iterative code changes. The
latency for applying a refactoring pattern dropped from 15 seconds to under 5
seconds.

Conclusion

Context economics is not merely a cost-saving measure; it is a fundamental discipline
for building scalable, high-performance agentic systems. By treating context as a scarce
resource and applying rigorous economic principles, we can unlock significant
improvements in latency, throughput, and cost-efficiency. The techniques explored in
this report—from workflow-aware KV cache management to agentic plan caching—
represent the frontier of production-grade Al engineering. Mastering this skill is the

74

Byrddynasty | Agentic Al Strategy

difference between a clever prototype and a sustainable, economically viable Al
product.

75

	Skill 5: Context Economics
	Deep Dive Analysis: Skill 5 - Context Economics and Optimization
	Executive Summary
	Sub-Skill 5.1: Prefix Caching and KV Cache Management
	Sub-skill 5.1a: Prefix Caching Fundamentals
	Sub-skill 5.1b: Cache-Friendly Prompt Design
	Sub-skill 5.1c: Workflow-Aware Eviction Policies - KVFlow Research
	Sub-skill 5.1d: Platform-Specific Caching Implementations
	Sub-skill 5.1: The Economics of Context and Optimization
	Sub-skill 5.1: Advanced Context Window Management at Scale

	Sub-Skill 5.2: Context Compaction and Summarization
	Sub-skill 5.2a: Hierarchical Summarization Strategies - Multi-level summarization (per-turn, per-session, per-user), dynamic granularity selection, compression ratios, quality preservation
	Sub-skill 5.2b: Sliding Window with Summarization - Maintaining Detailed Recent History, Summarizing Older Interactions, Window Size Optimization, Recency vs Completeness Tradeoffs
	Sub-skill 5.2c: Semantic Compression Techniques - Entity Extraction for Compression, Removing Redundancy, Preserving Critical Information, Lossy vs Lossless Compression

	Sub-Skill 5.3: Agentic Plan Caching
	Sub-skill 5.3a: Agentic Plan Caching (APC) - Caching abstract reasoning plans, plan structure reuse, variable substitution, 40-60% latency and cost reduction
	Sub-skill 5.3b: Plan Similarity Detection - Identifying Similar Reasoning Patterns
	Sub-skill 5.3c: Dynamic Plan Adaptation - Adapting cached plans to new contexts, parameter substitution, plan validation and correction

	Conclusion

