Byrddynasty | Agentic Al Strategy

The Nine Skills Framework
A Complete Guide to Building Al Systems That Don't Fall Apart

Agentic Al Strategy for Builders, Strategists, and Executives

Terry Byrd

byrddynasty.com



Byrddynasty | Agentic Al Strategy

Enhanced Framework: Essential
Skills for Agentic AI Strategists in
2026

Author: Manus Al
Date: December 25, 2025
Version: 2.0 (Enhanced)

Executive Summary

The landscape of agentic artificial intelligence has evolved dramatically since the early
frameworks emerged in 2024. Based on comprehensive parallel research across fifteen
autonomous workflow frameworks and emerging standards, this document presents an
enhanced skillset framework for the 2026 Agentic Al Strategist. While the original eight-
skill framework provided an excellent foundation, this enhanced version incorporates
critical insights from frameworks such as Pydantic AI, LlamalIndex, Haystack,
Semantic Kernel, and others that have reshaped the field.

The fundamental shift proposed in this enhancement is a move from framework-
specific knowledge to principle-based competencies. The rapid pace of innovation
in agentic AI means that specific tools and frameworks will continue to evolve, merge,
or become obsolete. However, the underlying principles of state management,
observability, data-centric design, and security will remain constant. This enhanced
framework therefore emphasizes transferable knowledge that will remain relevant
regardless of which specific tools dominate the market in 2026 and beyond.

Key Enhancements

This enhanced framework proposes nine core skills organized into three pillars,
representing a restructuring that better reflects the current state of the art:



Byrddynasty | Agentic Al Strategy

Pillar I: Autonomous System Architecture (Skills 1-3) - Skill 1: Multi-Agent
Orchestration and State Management Principles - Skill 2: Interoperability and
Integration Engineering - Skill 3: Production-Grade Observability and MLOps for Agents

Pillar II: Data-Centric AI Engineering (Skills 4-6) - Skill 4: Hybrid Memory
Architectures and Knowledge Engineering - Skill 5: Context Economics and Optimization
- Skill 6: Data Quality, Governance, and Grounding

Pillar III: Security, Governance, and Capability Engineering (Skills 7-9) - Skill 7:
Non-Human Identity and Access Management - Skill 8: Semantic Capability and Tool
Engineering - Skill 9: Agentic Security and Adversarial Resilience

Part I: Autonomous System Architecture

The first pillar focuses on the fundamental architectural patterns and operational
practices required to build, deploy, and maintain autonomous multi-agent systems at
scale. This pillar emphasizes the control plane and the mechanisms that govern how
agents exist, collaborate, and self-correct.

Skill 1: Multi-Agent Orchestration and State Management
Principles

Original Skill: "Advanced Multi-Agent System (MAS) Topologies and Design Patterns"
and "Orchestration Framework Proficiency and Hybridization"

Why This Change: The original framework split orchestration into two skills: one
focused on topologies and another on frameworks. Research into modern frameworks
like Pydantic AI, LlamaIndex AgentWorkflow, and Semantic Kernel reveals that
the critical competency is not mastery of specific tools, but rather a deep understanding
of the underlying principles of state management, control flow, and inter-agent
communication. By 2026, the most successful strategists will be those who can design
robust orchestration patterns regardless of the specific framework in use.

Enhanced Description:



Byrddynasty | Agentic Al Strategy

The 2026 Agentic Al Strategist must possess a principle-based understanding of how to
orchestrate complex, multi-step workflows involving multiple specialized agents. This
skill encompasses three core competencies:

1.1 State Management Architectures

The foundation of any reliable agentic system is robust state management. Unlike
traditional software where state is deterministic, agentic systems must manage
probabilistic state transitions where the next state depends on LLM outputs that may
vary between runs. The strategist must understand and implement multiple state
management paradigms:

Stateful Graph Architectures: Systems like LangGraph pioneered the concept of
representing agent workflows as explicit state machines, where each node represents a
computational step and edges represent state transitions. This approach provides
determinism and auditability, making it ideal for regulated industries. The strategist
must understand how to design state schemas, implement conditional edges, and
leverage checkpointing for fault tolerance.

Event-Driven State Management: Frameworks like LlamaIndex AgentWorkflow
and enterprise event streaming platforms demonstrate the power of event-driven
architectures. In this paradigm, state changes are represented as immutable events in a
log (e.g., Kafka, Redis Streams), allowing for temporal replay, distributed processing,
and natural integration with existing enterprise event systems. The strategist must
design event schemas, implement event handlers, and manage eventual consistency.

Context-Based State: Emerging frameworks like Pydantic AI emphasize the use of
dependency injection and context objects to manage state. This approach treats state
as a first-class object that is explicitly passed between agent components, enhancing
testability and modularity. The strategist must understand how to design context
schemas, implement dependency injection patterns, and manage context lifecycle.

1.2 Control Flow Patterns and Orchestration

Beyond state management, the strategist must master the control flow patterns that
govern how agents collaborate:



Byrddynasty | Agentic Al Strategy

Sequential Pipelines: The simplest pattern, where agents execute in a fixed order,
passing outputs to the next agent. This pattern is suitable for well-defined, linear
workflows like document processing pipelines.

Parallel Execution and Fan-Out/Fan-In: For tasks that can be decomposed into
independent subtasks, parallel execution dramatically reduces latency. The strategist
must design systems that can dynamically spawn worker agents, aggregate their
results, and handle partial failures gracefully.

Hierarchical Delegation: Complex tasks require hierarchical organization, where high-
level "manager" agents decompose goals and delegate to specialized "worker" agents.
This mirrors human organizational structures and is essential for scaling to enterprise-
level complexity. The strategist must design clear delegation protocols, manage context
propagation across hierarchy levels, and implement escalation mechanisms for failures.

Dynamic and Adaptive Topologies: The most advanced systems in 2026 do not use
fixed topologies. Instead, they dynamically adapt their collaboration patterns based on
task characteristics. For example, a system might use a hierarchical pattern for initial
planning, switch to a network (mesh) pattern for creative brainstorming, and then use a
supervisor pattern for execution. This requires the strategist to design meta-
orchestration logic that can reason about which topology is most appropriate for a given
sub-task.

1.3 Inter-Agent Communication Protocols

Agents must communicate effectively, and the strategist must design robust
communication mechanisms:

Synchronous Request-Response: The simplest pattern, suitable for low-latency
interactions where the calling agent can afford to block.

Asynchronous Message Passing: For long-running tasks, asynchronous patterns
using message queues or event streams allow agents to continue working while waiting
for responses. This is essential for building responsive, scalable systems.

Shared Memory and Blackboard Architectures: In some scenarios, agents
collaborate by reading and writing to a shared memory space (the "blackboard"). This
pattern is useful for collaborative problem-solving where multiple agents contribute
partial solutions.



Byrddynasty | Agentic Al Strategy

Handoff Mechanisms: A critical pattern identified in LlamaIndex research is the
"handoff" mechanism, where an agent explicitly transfers control and context to another
agent. The strategist must design clear handoff protocols that preserve context and
prevent information loss during transitions.

Key Frameworks Demonstrating These Principles: LangGraph (stateful graphs),
Llamalndex AgentWorkflow (event-driven), Pydantic Al (context-based), Semantic
Kernel (orchestration plugins), Haystack (pipeline architecture).

Skill 2: Interoperability and Integration Engineering
Original Skill: "Cross-Ecosystem Interoperability (Protocol Engineering)"

Why This Change: The original skill focused primarily on A2A and MCP protocols. While
these are important, the research revealed that interoperability in 2026 extends far
beyond these specific standards. The strategist must be able to integrate agentic
systems with legacy enterprise infrastructure, handle multiple competing standards, and
design for forward compatibility.

Enhanced Description:

By 2026, enterprises will have deployed agents from multiple vendors, each with
different protocols and data formats. The strategist must be an expert in integration
engineering, capable of building bridges between disparate systems.

2.1 Protocol Standards and Adaptation

Agent2Agent (A2A) Protocol: The A2A protocol, managed by the Linux Foundation,
provides a standardized way for agents to discover each other's capabilities and
collaborate. The strategist must understand the Agent Card specification, the JSON-RPC
2.0 transport layer, and the task lifecycle management (submitted, working,
completed). Critically, the strategist must implement robust discovery mechanisms that
allow agents to find collaborators based on semantic capability descriptions, not just
hardcoded endpoints.

Model Context Protocol (MCP): MCP, introduced by Anthropic and now supported by
major platforms including Google, standardizes how agents access tools and data
sources. The strategist must understand the client-host-server topology and design MCP



Byrddynasty | Agentic Al Strategy

servers that expose enterprise data in a secure, agent-friendly manner. A key insight
from research is the importance of "Golden Skills" — curated, verified tool definitions
that prevent agents from accessing dangerous or inappropriate APIs.

Beyond A2A and MCP: The strategist must also be familiar with other emerging
standards, including OpenAPI specifications for tool definitions, the Open Agentic
Schema Framework (OASF), and proprietary protocols from major cloud vendors (AWS
Bedrock, Azure AI Studio, Google Vertex Al). The ability to translate between these
standards and build adapter layers is critical.

2.2 Legacy System Integration

Most enterprises have decades of investment in legacy systems. The strategist must
design integration patterns that allow agents to interact with:

Traditional REST and SOAP APIs: Wrapping legacy APIs with agent-friendly
interfaces, including proper error handling and rate limiting.

Enterprise Databases: Designing secure, read-only (or carefully scoped read-write)
access patterns that allow agents to query databases without risking data corruption.

Message Queues and Event Streams: Integrating with existing Kafka, RabbitMQ, or
proprietary message bus systems to allow agents to participate in enterprise event-
driven architectures.

Human-in-the-Loop Systems: Designing workflows where agents can request human
approval or input at critical decision points, integrating with ticketing systems, approval
workflows, and collaboration platforms like Slack or Microsoft Teams.

2.3 Security and Trust in Interoperability

When agents from different vendors collaborate, security becomes paramount. The
strategist must implement:

Mutual Authentication: Ensuring that agents can verify each other's identities before
sharing sensitive information.

Data Lineage and Provenance Tracking: Implementing "Toxic Flow Analysis" to track
how data moves through multi-agent systems and identify potential security
vulnerabilities.



Byrddynasty | Agentic Al Strategy

Capability-Based Access Control: Ensuring that remote agents can only access the
specific capabilities they need, using scoped tokens and fine-grained permissions.

Key Frameworks and Standards: A2A Protocol, Model Context Protocol (MCP),
OpenAPI, OASF, AWS Bedrock Agents, Azure Al Studio, Google Vertex Al Agent Builder.

Skill 3: Production-Grade Observability and MLOps for Agents
Original Skill: "Agentic Observability, Debugging, and Self-Correction"

Why This Change: The original skill introduced the concept of agentic observability but
lacked concrete implementation guidance. Research into frameworks like Pydantic AI
(with its native Logfire integration) and enterprise MLOps platforms revealed that
observability must be treated as a first-class concern from day one, not an afterthought.
This enhanced skill emphasizes structured, actionable observability using industry-
standard tools.

Enhanced Description:

Agentic systems are inherently non-deterministic and opaque. Traditional debugging
techniques (stack traces, breakpoints) are insufficient. The 2026 strategist must
implement comprehensive observability that makes the "black box" transparent.

3.1 Structured Observability with OpenTelemetry

The industry has converged on OpenTelemetry as the standard for observability. The
strategist must implement:

Distributed Tracing: Every agent interaction must be instrumented as a trace, with
spans representing individual cognitive steps (planning, tool use, reasoning, output
generation). This allows the strategist to visualize the entire execution path and identify
bottlenecks or failures.

Structured Logging: Logs must be structured (JSON format) and include rich context
(agent ID, task ID, user ID, timestamps, input/output samples). This enables powerful
querying and analysis.



Byrddynasty | Agentic Al Strategy

Metrics Collection: The strategist must define and collect key metrics including latency
(time to first token, total execution time), cost (tokens consumed, API calls made),
error rates, and semantic quality scores.

Example Implementation: Pydantic AI provides native integration with Logfire, an
OpenTelemetry-based observability platform. This demonstrates the best practice of
embedding observability into the framework itself, rather than bolting it on later.

3.2 Cost and Performance Monitoring
Agentic systems can be expensive to run. The strategist must implement:

Real-Time Cost Tracking: Monitoring the cost of each LLM call, aggregated by agent,
task, and user. This enables budget enforcement and cost optimization.

Performance Profiling: Identifying which agents or steps are consuming the most
time or resources, enabling targeted optimization.

Anomaly Detection: Implementing automated alerts for unusual patterns (e.g., an
agent making an excessive number of API calls, indicating a potential loop or
malfunction).

3.3 Semantic Quality Evaluation

Traditional metrics (latency, error rate) don't capture whether an agent is producing
useful outputs. The strategist must implement:

LLM-as-a-Judge: Using a separate LLM to evaluate the quality of agent outputs on
dimensions like helpfulness, accuracy, safety, and instruction adherence. This provides a
quantitative measure of semantic quality.

Human Feedback Loops: Integrating mechanisms for users to provide feedback on
agent outputs, which can be used to fine-tune evaluation criteria and improve agent
performance over time.

Regression Testing: Maintaining a test suite of representative tasks and continuously
evaluating agent performance to detect regressions when system prompts or models
are updated.



Byrddynasty | Agentic Al Strategy

3.4 Self-Correction and Autonomous Debugging
The ultimate goal is for agents to debug themselves. The strategist must design:

Reflection Loops: Implementing "actor-critic" patterns where one agent generates a
solution and another agent reviews it. If the critic identifies issues, the actor iterates.

Automatic Retry with Validation: When an agent produces output that fails schema
validation (e.g., using Pydantic models), the system automatically provides the
validation error back to the agent and requests a corrected output.

(Content truncated due to size limit. Use page ranges or line ranges to read remaining
content)

10



	The Nine Skills Framework
	Enhanced Framework: Essential Skills for Agentic AI Strategists in 2026
	Executive Summary
	Key Enhancements

	Part I: Autonomous System Architecture
	Skill 1: Multi-Agent Orchestration and State Management Principles
	1.1 State Management Architectures
	1.2 Control Flow Patterns and Orchestration
	1.3 Inter-Agent Communication Protocols

	Skill 2: Interoperability and Integration Engineering
	2.1 Protocol Standards and Adaptation
	2.2 Legacy System Integration
	2.3 Security and Trust in Interoperability

	Skill 3: Production-Grade Observability and MLOps for Agents
	3.1 Structured Observability with OpenTelemetry
	3.2 Cost and Performance Monitoring
	3.3 Semantic Quality Evaluation
	3.4 Self-Correction and Autonomous Debugging




